Abstract We propose a generic compiler that can convert any zero-knowledge (ZK) proof for SIMD circuits to general circuits efficiently, and an extension that can preserve the space complexity of the proof systems. Our compiler can immediately produce new results improving upon state of the art.By plugging in our compiler to Antman, an interactive sublinear-communication protocol, we improve the overall communication complexity for general circuits from$$\mathcal {O}(C^{3/4})$$ to$$\mathcal {O}(C^{1/2})$$ . Our implementation shows that for a circuit of size$$2^{27}$$ , it achieves up to$$83.6\times $$ improvement on communication compared to the state-of-the-art implementation. Its end-to-end running time is at least$$70\%$$ faster in a 10Mbps network.Using the recent results on compressed$$\varSigma $$ -protocol theory, we obtain a discrete-log-based constant-round zero-knowledge argument with$$\mathcal {O}(C^{1/2})$$ communication and common random string length, improving over the state of the art that has linear-size common random string and requires heavier computation.We improve the communication of a designatedn-verifier zero-knowledge proof from$$\mathcal {O}(nC/B+n^2B^2)$$ to$$\mathcal {O}(nC/B+n^2)$$ .To demonstrate the scalability of our compilers, we were able to extract a commit-and-prove SIMD ZK from Ligero and cast it in our framework. We also give one instantiation derived from LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our methodology.
more »
« less
Perturbation theory for evolution of cooperation on networks
Abstract Network structure is a mechanism for promoting cooperation in social dilemma games. In the present study, we explore graph surgery, i.e., to slightly perturb the given network, towards a network that better fosters cooperation. To this end, we develop a perturbation theory to assess the change in the propensity of cooperation when we add or remove a single edge to/from the given network. Our perturbation theory is for a previously proposed random-walk-based theory that provides the threshold benefit-to-cost ratio,$$(b/c)^*$$ , which is the value of the benefit-to-cost ratio in the donation game above which the cooperator is more likely to fixate than in a control case, for any finite networks. We find that$$(b/c)^*$$ decreases when we remove a single edge in a majority of cases and that our perturbation theory captures at a reasonable accuracy which edge removal makes$$(b/c)^*$$ small to facilitate cooperation. In contrast,$$(b/c)^*$$ tends to increase when we add an edge, and the perturbation theory is not good at predicting the edge addition that changes$$(b/c)^*$$ by a large amount. Our perturbation theory significantly reduces the computational complexity for calculating the outcome of graph surgery.
more »
« less
- Award ID(s):
- 2052720
- PAR ID:
- 10423781
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Mathematical Biology
- Volume:
- 87
- Issue:
- 1
- ISSN:
- 0303-6812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Given integers$$n> k > 0$$ , and a set of integers$$L \subset [0, k-1]$$ , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ such that$$|F \cap F'| \in L$$ for distinct$$F, F'\in \mathcal {F}$$ .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ is a semidefinite programming approximation of the independence number$$\alpha $$ of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ , which greatly improves on the best known explicit construction.more » « less
-
Abstract We present the first unquenched lattice-QCD calculation of the form factors for the decay$$B\rightarrow D^*\ell \nu $$ at nonzero recoil. Our analysis includes 15 MILC ensembles with$$N_f=2+1$$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$a\approx 0.15$$ fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valencebandcquarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element$$|V_{cb}|$$ . We obtain$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\chi ^2\text {/dof} = 126/84$$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$R(D^*) = 0.265 \pm 0.013$$ , which confirms the current tension between theory and experiment.more » « less
-
Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
-
Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
An official website of the United States government
