It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
We present the first unquenched latticeQCD calculation of the form factors for the decay
 Publication Date:
 NSFPAR ID:
 10385938
 Journal Name:
 The European Physical Journal C
 Volume:
 82
 Issue:
 12
 ISSN:
 14346052
 Publisher:
 Springer Science + Business Media
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } = {\text {div}}D^{d+1+\gamma n} \nabla $$ ${L}_{\beta ,\gamma}=\text{div}{D}^{d+1+\gamma n}\nabla $ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ $\Omega \subset {R}^{n}$ of dimension$$\Gamma $$ $\Gamma $ , the now usual distance to the boundary$$d < n1$$ $d<n1$ given by$$D = D_\beta $$ $D={D}_{\beta}$ for$$D_\beta (X)^{\beta } = \int _{\Gamma } Xy^{d\beta } d\sigma (y)$$ ${D}_{\beta}{\left(X\right)}^{\beta}={\int}_{\Gamma}{Xy}^{d\beta}d\sigma \left(y\right)$ , where$$X \in \Omega $$ $X\in \Omega $ and$$\beta >0$$ $\beta >0$ . In this paper we show that the Green function$$\gamma \in (1,1)$$ $\gamma \in (1,1)$G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ ${L}_{\beta ,\gamma}$ , in the sense that the function$$D^{1\gamma }$$ ${D}^{1\gamma}$ satisfies a Carleson measure estimate on$$\big  D\nabla \big (\ln \big ( \frac{G}{D^{1\gamma }} \big )\big )\big ^2$$ $D\nabla (ln(\frac{G}{{D}^{1\gamma}})){}^{2}$ . We underline that the strong and the weak results are different in nature and, of course, at the levelmore »$$\Omega $$ $\Omega $ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ $V=23$ 
Abstract We perform pathintegral molecular dynamics (PIMD), ringpolymer MD (RPMD), and classical MD simulations of H
O and D$$_2$$ ${}_{2}$ O using the qTIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ ${}_{2}$ , isothermal compressibility$$\rho (T)$$ $\rho \left(T\right)$ , and selfdiffusion coefficients$$\kappa _T(T)$$ ${\kappa}_{T}\left(T\right)$D (T ) of H O and D$$_2$$ ${}_{2}$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ ${}_{2}$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ ${C}_{P}\left(T\right)$ O and D$$_2$$ ${}_{2}$ O exhibit a liquidliquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ ${}_{2}$ O and D$$_2$$ ${}_{2}$ O can be fitted remarkably well using the TwoStateEquationofState (TSEOS). Using the TSEOS, we estimate that the LLCP for qTIP4P/F H$$_2$$ ${}_{2}$ O, from PIMD simulations, is located at$$_2$$ ${}_{2}$ MPa,$$P_c = 167 \pm 9$$ ${P}_{c}=167\pm 9$ K, and$$T_c = 159 \pm 6$$ ${T}_{c}=159\pm 6$ g/cm$$\rho _c = 1.02 \pm 0.01$$ ${\rho}_{c}=1.02\pm 0.01$ . Isotope substitution effects are important; the LLCP location in qTIP4P/F D$$^3$$ ${}^{3}$ O is estimated to be$$_2$$ ${}_{2}$ MPa,$$P_c = 176 \pm 4$$ ${P}_{c}=176\pm 4$ K, and$$T_c = 177 \pm 2$$ ${T}_{c}=177\pm 2$ g/cm$$\rho _c = 1.13 \pm 0.01$$ ${\rho}_{c}=1.13\pm 0.01$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effectsmore »$$^3$$ ${}^{3}$ 
Abstract This paper examined the effect of Si addition on the cracking resistance of Inconel 939 alloy after laser additive manufacturing (AM) process. With the help of CALculation of PHAse Diagrams (CALPHAD) software ThermoCalc, the amounts of specific elements (C, B, and Zr) in liquid phase during solidification, cracking susceptibility coefficients (CSC) and cracking criterion based on
values ($$\left {{\text{d}}T/{\text{d}}f_{{\text{s}}}^{1/2} } \right$$ $\left(\text{d}T/\text{d}{f}_{\text{s}}^{1/2}\right)$T : solidification temperature,f _{s}: mass fraction of solid during solidification) were evaluated as the indicators for composition optimization. It was found that CSC together with values provided a better prediction for cracking resistance.$$\left {{\text{d}}T/{\text{d}}f_{{\text{s}}}^{1/2} } \right$$ $\left(\text{d}T/\text{d}{f}_{\text{s}}^{1/2}\right)$Graphical abstract 
Abstract Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spiketrains. They provide coding benefits including firingrate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signaltonoise ratio. Primary electrosensory afferent spiketrains in weakly electric fish fall into two categories based on the pattern of ISI correlations: nonbursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function
, where$${{\,\mathrm{\mathbf {R}}\,}}_k$$ ${\phantom{\rule{0ex}{0ex}}R\phantom{\rule{0ex}{0ex}}}_{k}$k is a multiple of the mean ISI. The function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II correlations generated with fast noise. A firstorder autoregressive (AR) process with a single parameter is sufficient to predict and accurately match both types of afferent ISImore »