skip to main content


Title: Triple and quadruple black holes in the ASTRID simulation at z ∼ 2
ABSTRACT

We use the ASTRID cosmological hydrodynamic simulation to investigate the properties and evolution of triple and quadruple massive black hole (MBH) systems at z = 2–3. Only a handful of MBH tuple systems have been detected to date. In ASTRID, we find 4 per cent of the $M_{\rm BH}\gt 10^7\, M_\odot$ are in tuples with $\Delta r_{\rm max} \lt 200\, {\rm kpc}$. The tuple systems span a range of separations with the majority of the observable AGN systems at Δr ∼ 50–100 kpc. They include some of the most massive BHs (up to $10^{10} \, M_\odot$) but with at least one of the components of $M_{\rm BH} \sim 10^7 \, {\rm M}_{\odot }$. Tuples’ host galaxies are typically massive with $M_* \sim 10^{10-11} \, M_\odot$. We find that $\gt 10~{{\ \rm per\ cent}}$ massive haloes with Mhalo > 1013 M⊙ host MBH tuples. Following the subsequent interactions between MBHs in tuples, we found that in $\sim 5~{{\ \rm per\ cent}}$ of the triplets all three MBHs merge within a Gyr, and 15 per cent go through one merger. As a by-product of the complex multigalaxy interaction of these systems, we also find that up to $\sim 5~{{\ \rm per\ cent}}$ of tuples lead to runaway MBHs. In ASTRID, virtually all of the ultramassive black holes ($\gt 10^{10} \, M_\odot$) have undergone a triple quasar phase, while for BHs with $M_{\rm BH} \sim 10^9 \, M_\odot$, this fraction drops to 50 per cent.

 
more » « less
NSF-PAR ID:
10431908
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1987-1996
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below ${\sim 200\, \text{pc}}$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($\sim 500\, \text{Myr}$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $\lesssim 20{{\rm per \,cent}}$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $\gt 10^9\, {\rm M}_\odot$. With the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $\gtrsim 60\,{\rm{per\,cent}}$ seed-seed mergers, $\sim 30\,{\rm{per\,cent}}$ involving only one seed-mass MBH, and $\sim 10\,{\rm{per\,cent}}$ mergers of non-seed MBHs.

     
    more » « less
  2. ABSTRACT

    We examine the dual [both black hole (BH) active] and offset (one BH active and in distinct galaxies) active galactic nucleus (AGN) population (comprising ∼ 2000 pairs at $0.5\, \text{kpc}\lesssim \Delta r\lt 30\, \text{kpc}$) at z = 2 ∼ 3 in the ASTRID simulation covering (360 cMpc)3. The dual (offset) AGN make up 3.0(0.5) per cent of all AGN at z = 2. The dual fraction is roughly constant while the offset fraction increases by a factor of 10 from z = 4 ∼ 2. Compared with the full AGN population, duals are characterized by low MBH/M* ratios, high specific star formation rates (sSFR) of $\sim 1\, \text{Gyr}^{-1}$, and high Eddington ratios (∼0.05, double that of single AGN). Dual AGNs are formed in major galaxy mergers (typically involving $M_\text{halo}\lt 10^{13}\, M_\odot$), with simular-mass BHs. At small separations (when host galaxies are in the late phase of the merger), duals become 2 ∼ 8 times brighter (albeit more obscured) than at larger separations. 80  per cent of the bright, close duals would merge within $\sim 500\, \text{Myr}$. Notably, the initially less-massive BHs in duals frequently become the brighter AGN during galaxy mergers. In offset AGN, the active BH is typically ≳ 10 times more massive than its non-active counterpart and than most BHs in duals. Offsets are predominantly formed in minor galaxy mergers with the active BH residing in the centre of massive haloes ($M_\text{ halo}\sim 10^{13-14}\, \mathrm{M}_\odot$). In these deep potentials, gas stripping is common and the secondary quickly deactivates. The stripping also leads to inefficient orbital decay amongst offsets, which stall at $\Delta r\sim 5\, \text{kpc}$ for a few hundred Myrs.

     
    more » « less
  3. ABSTRACT

    We present a novel, few-body computational framework designed to shed light on the likelihood of forming intermediate-mass (IM) and supermassive (SM) black holes (BHs) in nuclear star clusters (NSCs) through successive BH mergers, initiated with a single BH seed. Using observationally motivated NSC profiles, we find that the probability of an ${\sim }100\hbox{-}\mathrm{M}_\odot$ BH to grow beyond ${\sim }1000 \, \mathrm{M}_\odot$ through successive mergers ranges from ${\sim }0.1~{{\ \rm per\ cent}}$ in low-density, low-mass clusters to nearly 90  per cent in high-mass, high-density clusters. However, in the most massive NSCs, the growth time-scale can be very long ($\gtrsim 1\,$ Gyr); vice versa, while growth is least likely in less massive NSCs, it is faster there, requiring as little as ${\sim }0.1\,$Gyr. The increased gravitational focusing in systems with lower velocity dispersions is the primary contributor to this behaviour. We find that there is a simple ‘7-strikes-and-you’re-in’ rule governing the growth of BHs: Our results suggest that if the seed survives 7–10 successive mergers without being ejected (primarily through gravitational wave recoil kicks), the growing BH will most likely remain in the cluster and will then undergo runaway, continuous growth all the way to the formation of an SMBH (under the simplifying assumption adopted here of a fixed background NSC). Furthermore, we find that rapid mergers enforce a dynamically mediated ‘mass gap’ between about ${50\!-\!300 \, \mathrm{M}_\odot }$ in an NSC.

     
    more » « less
  4. ABSTRACT

    Massive black hole (MBH) binaries can form following a galaxy merger, but this may not always lead to a MBH binary merger within a Hubble time. The merger time-scale depends on how efficiently the MBHs lose orbital energy to the gas and stellar background, and to gravitational waves (GWs). In systems where these mechanisms are inefficient, the binary inspiral time can be long enough for a subsequent galaxy merger to bring a third MBH into the system. In this work, we identify and characterize the population of triple MBH systems in the Illustris cosmological hydrodynamic simulation. We find a substantial occurrence rate of triple MBH systems: in our fiducial model, 22 per cent of all binary systems form triples, and $\gt 70{{\ \rm per\ cent}}$ of these involve binaries that would not otherwise merge by z = 0. Furthermore, a significant subset of triples (6 per cent of all binaries, or more than a quarter of all triples) form a triple system at parsec scales, where the three BHs are most likely to undergo a strong three-body interaction. Crucially, we find that the rate of triple occurrence has only a weak dependence on key parameters of the binary inspiral model (binary eccentricity and stellar loss-cone refilling rate). We also do not observe strong trends in the host galaxy properties for binary versus triple MBH populations. Our results demonstrate the potential for triple systems to increase MBH merger rates, thereby enhancing the low-frequency GW signals detectable with pulsar timing arrays and with LISA.

     
    more » « less
  5. null (Ed.)
    ABSTRACT The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the MBH − M⋆ relation and the BH mass function. All simulations predict tight MBH − M⋆ relations, and struggle to produce BHs of $M_{\rm BH}\leqslant 10^{7.5}\, \rm M_{\odot }$ in galaxies of $M_{\star }\sim 10^{10.5}\!-\!10^{11.5}\, \rm M_{\odot }$. While the time evolution of the mean MBH − M⋆ relation is mild ($\rm \Delta M_{\rm BH}\leqslant 1\, dex$ for 0 $\leqslant z \leqslant$ 5) for all the simulations, its linearity (shape) and normalization varies from simulation to simulation. The strength of SN feedback has a large impact on the linearity and time evolution for $M_{\star }\leqslant 10^{10.5}\, \rm M_{\odot }$. We find that the low-mass end is a good discriminant of the simulation models, and highlights the need for new observational constraints. At the high-mass end, strong AGN feedback can suppress the time evolution of the relation normalization. Compared with observations of the local Universe, we find an excess of BHs with $M_{\rm BH}\geqslant 10^{9}\, \rm M_{\odot }$ in most of the simulations. The BH mass function is dominated by efficiently accreting BHs ($\log _{10}\, f_{\rm Edd}\geqslant -2$) at high redshifts, and transitions progressively from the high-mass to the low-mass end to be governed by inactive BHs. The transition time and the contribution of active BHs are different among the simulations, and can be used to evaluate models against observations. 
    more » « less