The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications. 
                        more » 
                        « less   
                    
                            
                            Scattered‐light‐sheet microscopy with sub‐cellular resolving power
                        
                    
    
            Abstract Since its first demonstration over 100 years ago, scattering‐based light‐sheet microscopy has recently re‐emerged as a key modality in label‐free tissue imaging and cellular morphometry; however, scattering‐based light‐sheet imaging with subcellular resolution remains an unmet target. This is because related approaches inevitably superimpose speckle or granular intensity modulation on to the native subcellular features. Here, we addressed this challenge by deploying a time‐averaged pseudo‐thermalized light‐sheet illumination. While this approach increased the lateral dimensions of the illumination sheet, we achieved subcellular resolving power after image deconvolution. We validated this approach by imaging cytosolic carbon depots in yeast and bacteria with increased specificity, no staining, and ultralow irradiance levels. Overall, we expect this scattering‐based light‐sheet microscopy approach will advance single, live cell imaging by conferring low‐irradiance and label‐free operation towards eradicating phototoxicity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2041523
- PAR ID:
- 10423811
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Biophotonics
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 1864-063X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy fromintensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combineslinearforward-scattering and height-dependentnonlinearback-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model’s validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research.more » « less
- 
            Abstract Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.more » « less
- 
            Brain tumor surgery involves a delicate balance between maximizing the extent of tumor resection while minimizing damage to healthy brain tissue that is vital for neurological function. However, differentiating between tumor, particularly infiltrative disease, and healthy brain in-vivo remains a significant clinical challenge. Here we demonstrate that quantitative oblique back illumination microscopy (qOBM)—a novel label-free optical imaging technique that achieves tomographic quantitative phase imaging in thick scattering samples—clearly differentiates between healthy brain tissue and tumor, including infiltrative disease. Data from a bulk and infiltrative brain tumor animal model show that qOBM enables quantitative phase imaging of thick fresh brain tissues with remarkable cellular and subcellular detail that closely resembles histopathology using hematoxylin and eosin (H&E) stained fixed tissue sections, the gold standard for cancer detection. Quantitative biophysical features are also extracted from qOBM which yield robust surrogate biomarkers of disease that enable (1) automated tumor and margin detection with high sensitivity and specificity and (2) facile visualization of tumor regions. Finally, we develop a low-cost, flexible, fiber-based handheld qOBM device which brings this technology one step closer to in-vivo clinical use. This work has significant implications for guiding neurosurgery by paving the way for a tool that delivers real-time, label-free, in-vivo brain tumor margin detection.more » « less
- 
            Abstract Label‐free super‐resolution (LFSR) imaging relies on light‐scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super‐resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state‐of‐the‐art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label‐free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction‐limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super‐resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near‐field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere‐assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
