skip to main content


Title: Reassessing cold sintering in the framework of pressure solution theory
Cold sintering densification and coarsening mechanisms are considered from the perspective of the nonequilibrium chemo-mechanical process known in Earth Sciences as pressure solution creep (or dissolutionprecipitation creep). This is an important mechanism of densification and deformation in many geological rock formations in the Earth’s upper crust, and although very slow in nature, it is of direct relevance to the cold sintering process. In cold sintering, we select particulate materials and identify experimental processing parameters to significantly accelerate the kinetics of dissolution-precipitation phenomena, with appropriate consideration of chemistry, applied stress, particle size and temperatures. In the theory of pressure solution, pressure-driven densification is considered to involve the consecutive stages of dissolution at grain contact points, then diffusive transport along the grain boundaries towards open pore surfaces, and then precipitation, all driven by chemical potential gradients. In this study, it is shown that cold sintering of BaTiO3, ZnO and KH2PO4 (KDP) ceramic materials proceeds by the same type of serial process, with the pressure solution creep rate being controlled by the slowest kinetic step. This is demonstrated by the values of activation energy (Ea) for densification, which are in good agreement with the existing literature on dissolution, precipitation, or coarsening. The influence of pressure on the morphology of ZnO grains also supports the pressure solution mechanism. Other characteristics that can be understood qualitatively in terms of pressure solution are observed in the in systems such as BaTiO3 and KDP. We further consider activation energies for grain growth with respect to the precipitation process, as well as evidence for coalescence and Ostwald ripening during cold sintering. For completeness we also consider materials that show significant plastic deformation under compression. Our findings point the way for new advances in densification, microstructural control, and reductions in cold sintering pressure, via the use of appropriate transient solvents in metals and hybrid organic-inorganic systems, such as the Methylammonium lead bromide (MAPBr) perovskite.  more » « less
Award ID(s):
2202525
NSF-PAR ID:
10423872
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the European Ceramic Society
Volume:
43
Issue:
2023
ISSN:
1873-619X
Page Range / eLocation ID:
1-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The cold sintering process (CSP) is a low-temperature consolidation method used to fabricate materials and their composites by applying transient solvents and external pressure. In this mechano-chemical process, the local dissolution, solvent evaporation, and supersaturation of the solute lead to “solution-precipitation” for consolidating various materials to nearly full densification, mimicking the natural pressure solution creep. Because of the low processing temperature (<300°C), it can bridge the temperature gap between ceramics, metals, and polymers for co-sintering composites. Therefore, CSP provides a promising strategy of interface engineering to readily integrate high-processing temperature ceramic materials (e.g., active electrode materials, ceramic solid-state electrolytes) as “grains” and low-melting-point additives (e.g., polymer binders, lithium salts, or solid-state polymer electrolytes) as “grain boundaries.” In this minireview, the mechanisms of geomimetics CSP and energy dissipations are discussed and compared to other sintering technologies. Specifically, the sintering dynamics and various sintering aids/conditions methods are reviewed to assist the low energy consumption processes. We also discuss the CSP-enabled consolidation and interface engineering for composite electrodes, composite solid-state electrolytes, and multi-component laminated structure battery devices for high-performance solid-state batteries. We then conclude the present review with a perspective on future opportunities and challenges. 
    more » « less
  2. Abstract

    Zinc oxide densification mechanisms occurring during the cold sintering process (CSP) are examined by investigating specifically the effects of ion concentration in solution, temperature, pressure, and die sealing. The experiments suggest that mass transport through solution is a primary densification mechanism and that either a pre‐loaded solution or grain dissolution can supply migrating ions. Additionally, results indicate cold sintering zinc oxide requires a critical pressure value, above which densification is relatively pressure independent under the majority of process conditions. This critical pressure is related to thermal expansion of the liquid and determines the uniaxial pressure threshold for densification. The data supports a three‐stage interpretation of cold sintering, which includes quick compaction, grain rearrangement, and dissolution‐reprecipitation events. Further, it is observed that under the lowest temperature conditions a net decrease in particle size can occur during the cold sintering process.

     
    more » « less
  3. Cold sintering is an unusually low-temperature process that uses a transient transport phase, which is most often liquid, and an applied uniaxial force to assist in densification of a powder compact. By using this approach, many ceramic powders can be transformed to high-density monoliths at temperatures far below the melting point. In this article, we present a summary of cold sintering accomplishments and the current working models that describe the operative mechanisms in the context of other strategies for low-temperature ceramic densification. Current observations in several systems suggest a multiple-stage densification process that bears similarity to models that describe liquid phase sintering. We find that grain growth trends are consistent with classical behavior, but with activation energy values that are lower than observed for thermally driven processes. Densification behavior in these low-temperature systems is rich, and there is much to be investigated regarding mass transport within and across the liquid-solid interfaces that populate these ceramics during densification. Irrespective of mechanisms, these low temperatures create a new opportunity spectrum to design grain boundaries and create new types of nanocomposites among material combinations that previously had incompatible processing windows. Future directions are discussed in terms of both the fundamental science and engineering of cold sintering. 
    more » « less
  4. Cold sintering is an emerging non-equilibrium process methodology that densifies ceramic powders at significantly reduced temperatures. This study proposes a fundamental framework to investigate its densification kinetics. By controlling four densification process variables including the transient chemistry, sintering temperature, uniaxial pressure and dwell time, the anisothermal sintering kinetics of highly densified ZnO is identified and phenomenologically modeled for its relative activation energetics. 
    more » « less
  5. Abstract

    Sintering additives are generally considered to be important for improving densification in fabrication of transparent ceramics. However, the sintering aids as impurities doped in the laser materials would decrease the laser output power and produce additional heat during laser operation. In this work, Yb:YAG ceramics were vacuum‐sintered without additives at different temperatures for various soaking time through using ball‐milled powders synthesized by co‐precipitation route. The densification behavior and grain growth kinetics of Yb:YAG ceramics were systematically investigated through densification curves and microstructural characterizations. It was determined that the densification in the 1500°C‐1600°C temperature range was controlled by a grain‐boundary diffusion. It is revealed that the volume diffusion is the main mechanism controlling the grain growth between 1600°C and 1750°C. Although SiO2additives can promote densification during low‐temperature sintering, the optical transmittance of Yb:YAG ceramic with no additives, sintered at 1800°C for 15 hours, reaches a maximum of 83.4% at 1064 nm, very close to the measured transmittance value of Yb:YAG single crystal. The optical attenuation loss was measured at 1064 nm in Yb:YAG transparent ceramic, to be 0.0035 cm−1, a value close to that observed for single crystals.

     
    more » « less