skip to main content


Title: Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature
Abstract

Zinc oxide densification mechanisms occurring during the cold sintering process (CSP) are examined by investigating specifically the effects of ion concentration in solution, temperature, pressure, and die sealing. The experiments suggest that mass transport through solution is a primary densification mechanism and that either a pre‐loaded solution or grain dissolution can supply migrating ions. Additionally, results indicate cold sintering zinc oxide requires a critical pressure value, above which densification is relatively pressure independent under the majority of process conditions. This critical pressure is related to thermal expansion of the liquid and determines the uniaxial pressure threshold for densification. The data supports a three‐stage interpretation of cold sintering, which includes quick compaction, grain rearrangement, and dissolution‐reprecipitation events. Further, it is observed that under the lowest temperature conditions a net decrease in particle size can occur during the cold sintering process.

 
more » « less
NSF-PAR ID:
10460858
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
102
Issue:
8
ISSN:
0002-7820
Page Range / eLocation ID:
p. 4459-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cold sintering densification and coarsening mechanisms are considered from the perspective of the nonequilibrium chemo-mechanical process known in Earth Sciences as pressure solution creep (or dissolutionprecipitation creep). This is an important mechanism of densification and deformation in many geological rock formations in the Earth’s upper crust, and although very slow in nature, it is of direct relevance to the cold sintering process. In cold sintering, we select particulate materials and identify experimental processing parameters to significantly accelerate the kinetics of dissolution-precipitation phenomena, with appropriate consideration of chemistry, applied stress, particle size and temperatures. In the theory of pressure solution, pressure-driven densification is considered to involve the consecutive stages of dissolution at grain contact points, then diffusive transport along the grain boundaries towards open pore surfaces, and then precipitation, all driven by chemical potential gradients. In this study, it is shown that cold sintering of BaTiO3, ZnO and KH2PO4 (KDP) ceramic materials proceeds by the same type of serial process, with the pressure solution creep rate being controlled by the slowest kinetic step. This is demonstrated by the values of activation energy (Ea) for densification, which are in good agreement with the existing literature on dissolution, precipitation, or coarsening. The influence of pressure on the morphology of ZnO grains also supports the pressure solution mechanism. Other characteristics that can be understood qualitatively in terms of pressure solution are observed in the in systems such as BaTiO3 and KDP. We further consider activation energies for grain growth with respect to the precipitation process, as well as evidence for coalescence and Ostwald ripening during cold sintering. For completeness we also consider materials that show significant plastic deformation under compression. Our findings point the way for new advances in densification, microstructural control, and reductions in cold sintering pressure, via the use of appropriate transient solvents in metals and hybrid organic-inorganic systems, such as the Methylammonium lead bromide (MAPBr) perovskite. 
    more » « less
  2. The cold sintering process (CSP) is a low-temperature consolidation method used to fabricate materials and their composites by applying transient solvents and external pressure. In this mechano-chemical process, the local dissolution, solvent evaporation, and supersaturation of the solute lead to “solution-precipitation” for consolidating various materials to nearly full densification, mimicking the natural pressure solution creep. Because of the low processing temperature (<300°C), it can bridge the temperature gap between ceramics, metals, and polymers for co-sintering composites. Therefore, CSP provides a promising strategy of interface engineering to readily integrate high-processing temperature ceramic materials (e.g., active electrode materials, ceramic solid-state electrolytes) as “grains” and low-melting-point additives (e.g., polymer binders, lithium salts, or solid-state polymer electrolytes) as “grain boundaries.” In this minireview, the mechanisms of geomimetics CSP and energy dissipations are discussed and compared to other sintering technologies. Specifically, the sintering dynamics and various sintering aids/conditions methods are reviewed to assist the low energy consumption processes. We also discuss the CSP-enabled consolidation and interface engineering for composite electrodes, composite solid-state electrolytes, and multi-component laminated structure battery devices for high-performance solid-state batteries. We then conclude the present review with a perspective on future opportunities and challenges. 
    more » « less
  3. Abstract

    This paper reviews the synthesis of BaTiO3-based ceramic and composites through the cold sintering process. Cold sintering is a densification process that works with a low-temperature mechanism known as pressure solution creep. This provides several opportunities to fabricate BaTiO3into new composite structures that could provide important advanced dielectric properties. Here we revisit the challenges of densifying a material such as BaTiO3that has incongruent dissolution. We consider the issues of surface chemistry, selection of transient flux, core–shell designs in BaTiO3, co-sintering with polymers in the grain boundaries and the technical challenges associated with incorporating all these ideas into tape casting steps for future fabrication of multilayer device structures.

     
    more » « less
  4. Abstract

    A spark plasma sintering (SPS) process has been explored to densify FJS‐lunar soil simulants for structural applications in space explorations. The effect of SPS conditions, such as temperature and pressure, on the densification behavior, phase transformation, microstructural evolution, and mechanical properties of FJS‐1 have been examined by conducting the X‐ray diffraction analysis, electron microscopy imaging, and nano/micro indentation testing. Test analysis results were also compared to results from the FJS‐1 powder and sintered samples without pressure. The FJS‐1 powder was composed of sodian anorthite, augite, pigeonite, and iron titanium oxide. When FJS‐lunar soil simulants were sintered without pressure, the main phase evolved from sodian anorthite to the intermediate sodian anorthite, jadeite and glass, and iron titanium oxide at 1000°C, which were further transformed into filiform and feather‐shaped augite and schorlomite at 1100°C. Most densification processes in pressureless sintering occurred at 1050°C‐1100°C. During the SPS process, the main phases were sodian anorthite, pigeonite, and iron titanium oxide at 900°C. These phases were transformed to sodian anorthite, glass, and feather‐shaped augite at 1000°C and 1050°C, with the nucleation of dendritic schorlomite at 1050°C. Significant densification by SPS can be observed as low as 900°C, which indicates that the application of pressure can substantially lower the sintering temperature. The SPSed samples showed higher Vickers microhardness than the pressureless sintered samples. The mechanical properties of the local phases were represented by the contour maps of elastic modulus and nanohardness. Multiscale mechanical test results along with the microstructural characteristics further imply that the SPS can be considered a promising in‐situ resource utilization (ISRU) method to densify lunar soils.

     
    more » « less
  5. Abstract

    The cold sintering process (CSP) densifies ceramics at much lower temperatures than conventional sintering processes. Several ceramics and composite systems have been successfully densified under cold sintering. For the grain growth kinetics of zinc oxide, reduced activation energies are shown, and yet the mechanism behind this growth is unknown. Herein, we investigate these mechanisms in more detail with experiments and ReaxFF molecular dynamics simulations. We investigated the recrystallization of zinc cations under various acidic conditions and found that their adsorption to the surface can be a rate‐limiting factor for cold sintering. Our studies show that surface hydroxylation in CSP does not inhibit crystallization; in contrast, by creating a surface complex, it creates an orders of magnitude acceleration in surface diffusion, and in turn, accelerates recrystallization.

     
    more » « less