- Award ID(s):
- 1852516
- PAR ID:
- 10423954
- Date Published:
- Journal Name:
- International Conference Information Visualisation (IV)
- Page Range / eLocation ID:
- 61 to 66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Full-body motion capture is essential for the study of body movement. Video-based, markerless, mocap systems are, in some cases, replacing marker-based systems, but hybrid systems are less explored. We develop methods for coregistration between 2D video and 3D marker positions when precise spatial relationships are not known a priori. We illustrate these methods on three-ball cascade juggling in which it was not possible to use marker-based tracking of the balls, and no tracking of the hands was possible due to occlusion. Using recorded video and motion capture, we aimed to transform 2D ball coordinates into 3D body space as well as recover details of hand motion. We proposed four linear coregistration methods that differ in how they optimize ball-motion constraints during hold and flight phases, using an initial estimate of hand position based on arm and wrist markers. We found that minimizing the error between ball and hand estimate was globally suboptimal, distorting ball flight trajectories. The best-performing method used gravitational constraints to transform vertical coordinates and ball-hold constraints to transform lateral coordinates. This method enabled an accurate description of ball flight as well as a reconstruction of wrist movements. We discuss these findings in the broader context of video/motion capture coregistration.more » « less
-
Simulating realistic butterfly motion has been a widely-known challenging problem in computer animation. Arguably, one of its main reasons is the difficulty of acquiring accurate flight motion of butterflies. In this paper we propose a practical yet effective, optical marker-based approach to capture and process the detailed motion of a flying butterfly. Specifically, we first capture the trajectories of the wings and thorax of a flying butterfly using optical marker based motion tracking. After that, our method automatically fills the positions of missing markers by exploiting the continuity and relevance of neighboring frames, and improves the quality of the captured motion via noise filtering with optimized parameter settings. Through comparisons with existing motion processing methods, we demonstrate the effectiveness of our approach to obtain accurate flight motions of butterflies. Furthermore, we created and will release a first-of-its-kind butterfly motion capture dataset to research community.more » « less
-
We propose MiShape, a millimeter-wave (mmWave) wireless signal based imaging system that generates high-resolution human silhouettes and predicts 3D locations of body joints. The system can capture human motions in real-time under low light and low-visibility conditions. Unlike existing vision-based motion capture systems, MiShape is privacy non-invasive and can generalize to a wide range of motion tracking applications at-home. To overcome the challenges with low-resolution, specularity, and aliasing in images from Commercial-Off-The-Shelf (COTS) mmWave systems, MiShape designs deep learning models based on conditional Generative Adversarial Networks and incorporates the rules of human biomechanics. We have customized MiShape for gait monitoring, but the model is well adaptive to any tracking applications with limited fine-tuning samples. We experimentally evaluate MiShape with real data collected from a COTS mmWave system for 10 volunteers, with diverse ages, gender, height, and somatotype, performing different poses. Our experimental results demonstrate that MiShape delivers high-resolution silhouettes and accurate body poses on par with an existing vision-based system, and unlocks the potential of mmWave systems, such as 5G home wireless routers, for privacy-noninvasive healthcare applications.more » « less
-
In this study, a 3D asymmetric lifting motion is predicted by using a hybrid predictive model to prevent potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics-based motion optimization method. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the predicted kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool in OpenSim. The predicted asymmetric motion and GRFs are validated with experimental data. Muscle activation results between the simulated and experimental EMG are also compared to validate the model. Finally, the shear and compression spine loads are compared to NIOSH recommended limits. The differences between asymmetric and symmetric liftings are also compared.
-
This study presents a mobile app that facilitates undergraduate students to learn data science through their own full body motions. Leveraging the built-in camera of a mobile device, the proposed app captures the user and feeds their images into an open-source computer-vision algorithm that localizes the key joint points of human body. As students can participate in the entire data collection process, the obtained motion data is context-rich and personally relevant to them. The app utilizes the collected motion data to explain various concepts and methods in data science under the context of human movements. The app also visualizes the geometric interpretation of data through various visual aids, such as interactive graphs and figures. In this study, we use principal component analysis, a commonly used dimensionality reduction method, as an example to demonstrate the proposed learning framework. Strategies to encompass other learning modules are also discussed for further improvement.more » « less