skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NO and N 2 O Release from the Trityl Diazeniumdiolate Complexes [M(O 2 N 2 CPh 3 ) 3 ] − (M = Fe, Co)
Award ID(s):
2055063
PAR ID:
10423973
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
62
Issue:
12
ISSN:
0020-1669
Page Range / eLocation ID:
4847 to 4852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In our experiment, a trace amount of an organic molecule (M = 1H-phenalen-1-one, 9-fluorenone, pyridine, or acridine) was seeded into a gas mix consisting of 3% O2 with a rare gas buffer (He or Ar) and then supersonically expanded. We excited the resulting molecular beam with ultraviolet light at either 355 nm (1H-phenalen-1-one, 9-fluorenone, or acridine) or 266 nm (pyridine) and used resonance enhanced multiphoton ionization (REMPI) spectroscopy to probe for formation of O2 in the a 1Δg state, 1O2. For all systems, the REMPI spectra demonstrates that ultraviolet excitation results in formation of 1O2 and the oxygen product is confirmed to be in the ground vibrational state and with an effective rotational temperature below 80 K. We then recorded the velocity map ion image of the 1O2 product. From the ion images we determined the center-of-mass translational energy distribution, P(ET), assuming photodissociation of a bimolecular M-O2 complex. We also report results from electronic structure calculations that allow for a determination of the M-O2 ground state binding energy. We use the complex binding energy, the energy to form 1O2, and the adiabatic triplet energy for each organic molecule to determine the available energy following photodissociation. For dissociation of a bimolecular complex, this available energy may be partitioned into either center-of-mass recoil or internal degrees of freedom of the organic moiety. We use the available energy to generate a Prior distribution, which predicts statistical energy partitioning during dissociation. For low available energies, less than 0.2 eV, we find the statistical prediction is in reasonable agreement with the experimental observations. However, at higher available energies the experimental distribution is biased to lower center-of-mass kinetic energies compared with the statistical prediction, which suggests the complex undergoes vibrational predissociation. 
    more » « less
  2. Focused Ga + ion milling of lightly Si-doped, n-type Ga 2 O 3 was performed with 2–30 kV ions at normal incidence and beam currents that were a function of beam voltage, 65 nA for 30 kV, 26 nA for 10 kV, 13 nA for 5 kV, and 7.1 nA for 2 kV, to keep the milling depth constant at 100 nm. Approximate milling rates were 15, 6, 2.75, and 1.5  μm 3 /s for 30, 10, 5, and 2 kV, respectively. The electrical effects of the ion damage were characterized by Schottky barrier height and diode ideality factor on vertical rectifier structures comprising 10  μm epitaxial n-Ga 2 O 3 on n + Ga 2 O 3 substrates, while the structural damage was imaged by transmission electron microscopy. The reverse bias leakage was largely unaffected even by milling at 30 kV beam energy, while the forward current-voltage characteristics showed significant deterioration at 5 kV, with an increase in the ideality factor from 1.25 to 2.25. The I–V characteristics no longer showed rectification for the 30 kV condition. Subsequent annealing up to 400 °C produced substantial recovery of the I–V characteristics for all beam energies and was sufficient to restore the initial ideality factor completely for beam energies up to 5 kV. Even the 30 kV-exposed rectifiers showed a recovery of the ideality factor to 1.8. The surface morphology of the ion-milled Ga 2 O 3 was smooth even at 30 kV ion energy, with no evidence for preferential sputtering of the oxygen. The surface region was not amorphized by extended ion milling (35 min) at 5 kV with the samples held at 25 °C, as determined by electron diffraction patterns, and significant recovery of the lattice order was observed after annealing at 400 °C. 
    more » « less
  3. Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1. 
    more » « less