skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2055063

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we describe the easy synthesis of mercury complexes with the 1,5,9‐trimesityldipyrromethene (MesDPM) ligand. The compounds were characterized using standard analytic methods such as NMR, IR, as well as UV/Vis spectroscopy. The molecular structures in solid state were determined by single‐crystal X‐ray diffraction analysis (SC‐XRD) experiments. In addition, the199Hg NMR chemical shifts were determined by measurements and quantum chemical calculations. 
    more » « less
  2. Abstract Reaction of [CuH(PPh3)]6with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable‐temperature1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl−H orbital interaction. According to DFT, the1H chemical shift of the Tl‐adjacent hydride ligands of[1]+includes 7.7 ppm of deshielding due to spin‐orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that[1][OTf]is only the third isolable species reported to contain a Tl−H interaction. 
    more » « less
  3. Free, publicly-accessible full text available February 17, 2026