skip to main content


This content will become publicly available on April 1, 2024

Title: SN 2020jgb: A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy
Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.  more » « less
Award ID(s):
2034437
NSF-PAR ID:
10424026
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
946
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Double detonations of sub-Chandrasekhar mass white dwarfs are a promising explosion scenario for Type Ia supernovae, whereby a detonation in a surface helium shell triggers a secondary detonation in a carbon-oxygen core. Recent work has shown that low-mass helium shell models reproduce observations of normal SNe Ia. We present 3D radiative transfer simulations for a suite of 3D simulations of the double detonation explosion scenario for a range of shell and core masses. We find light curves broadly able to reproduce the faint end of the width–luminosity relation shown by SNe Ia, however, we find that all of our models show extremely red colours, not observed in normal SNe Ia. This includes our lowest mass helium shell model. We find clear Ti ii absorption features in the model spectra, which would lead to classification as peculiar SNe Ia, as well as line blanketing in some lines of sight by singly ionized Cr and Fe-peak elements. Our radiative transfer simulations show that these explosion models remain promising to explain peculiar SNe Ia. Future full non-LTE simulations may improve the agreement of these explosion models with observations of normal SNe Ia.

     
    more » « less
  2. Abstract

    SN 2018aoz is a Type Ia SN with aB-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hαand Heifavor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [Oi] and Heidisfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Feii] and [Niii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission,BmaxVmaxcolor, and weak strength of nebular-phase [Caii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.

     
    more » « less
  3. Abstract

    We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14μm. This spectrum unveils the previously unobserved 2.5−5μm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2μm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ariii] 8.99μm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.

     
    more » « less
  4. Abstract

    The detonation of an overlying helium layer on a 0.8–1.1Mcarbon–oxygen (CO) white dwarf (WD) can detonate the CO WD and create a thermonuclear supernova (SN). Many authors have recently shown that when the mass of the He layer is low (≲0.03M), the ashes from its detonation minimally impact the spectra and light curve from the CO detonation, allowing the explosion to appear remarkably similar to Type Ia SNe. These new insights motivate our investigation of dynamical He shell burning and our search for a binary scenario that stably accumulates thermally unstable He shells in the 0.01–0.08Mrange, thick enough to detonate, but also often thin enough for minimal impact on the observables. We first show that our improved nonadiabatic evolution of convective He shell burning in this range of shell mass leads to conditions ripe for a He detonation. We also find that a stable mass transfer scenario with a high-entropy He WD donor of mass 0.15–0.25Myields the He shell masses needed to achieve the double detonations. This scenario also predicts that the surviving He donor leaves with a spatial velocity consistent with the unusual runaway object, D6-2. We find that hot He WD donors originate in common-envelope events when a 1.3–2.0Mstar fills its Roche lobe at the base of the red giant branch at orbital periods of 1–10 days with the CO WD.

     
    more » « less
  5. Abstract A thermonuclear explosion triggered by a He-shell detonation on a carbon–oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i -band peak absolute magnitude is derived to be around −17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i λ 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700–10500 Å is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models. 
    more » « less