skip to main content


Title: On the nature of fast blue optical transients
ABSTRACT

Short rise times of fast blue optical transients (FBOTs) require very light ejected envelopes, $M_{\rm ej} \le 10^{-1} \, \mathrm{M}_\odot$, much smaller than of a typical supernova. The detection by Chandra of X-ray emission in AT2020mrf of LX ∼ 1042 erg s−1 after 328 d implies total, overall dominant, X-ray energetics at the gamma-ray burst level of ∼6 × 1049 erg. We further develop a model of Lyutikov and Toonen, whereby FBOTs are the results of a late accretion-induced collapse of the product of double white dwarf (WD) merger between ONeMg WD and another WD. Small ejecta mass, and the rarity of FBOTs, results from the competition between mass-loss from the merger product to the wind, and ashes added to the core, on a time-scale of ∼103–104 yr. FBOTs proper come from central engine-powered radiation-dominated forward shock as it propagates through ejecta. All the photons produced by the central source deep inside the ejecta escape almost simultaneously, producing a short bright event. The high-energy emission is generated at the highly relativistic and highly magnetized termination shock, qualitatively similar to pulsar wind nebulae. The X-ray bump observed in AT2020mrf by SRG/eROSITA, predicted by Lyutikov and Toonen, is coming from the breakout of the engine-powered shock from the ejecta into the preceding wind. The model requires total energetics of just few × 1050 erg, slightly above the observed X-rays. We predict that the system is hydrogen poor.

 
more » « less
NSF-PAR ID:
10424042
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2293-2304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less
  2. Abstract

    Progenitor models for the “luminous” subclass of Fast Blue Optical Transients (LFBOTs; prototype: AT2018cow) are challenged to simultaneously explain all of their observed properties: fast optical rise times of days or less; peak luminosities ≳1044erg s−1; low yields ≲0.1Mof56Ni; aspherical ejecta with a wide velocity range (≲3000 km s−1to ≳0.1–0.5cwith increasing polar latitude); presence of hydrogen-depleted-but-not-free dense circumstellar material (CSM) on radial scales from ∼1014cm to ∼3 × 1016cm; embedded variable source of non-thermal X-ray/γ-rays, suggestive of a compact object. We show that all of these properties are consistent with the tidal disruption and hyper-accretion of a Wolf-Rayet (WR) star by a black hole or neutron star binary companion. In contrast with related previous models, the merger occurs with a long delay (≳100 yr) following the common envelope (CE) event responsible for birthing the binary, as a result of gradual angular momentum loss to a relic circumbinary disk. Disk-wind outflows from the merger-generated accretion flow generate the56Ni-poor aspherical ejecta with the requisite velocity range. The optical light curve is powered primarily by reprocessing X-rays from the inner accretion flow/jet, though CSM shock interaction also contributes. Primary CSM sources include WR mass loss from the earliest stages of the merger (≲1014cm) and the relic CE disk and its photoevaporation-driven wind (≳1016cm). Longer delayed mergers may instead give rise to supernovae Type Ibn/Icn (depending on the WR evolutionary state), connecting these transient classes with LFBOTs.

     
    more » « less
  3. Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts. 
    more » « less
  4. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  5. null (Ed.)
    ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of ${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$, we can rule out very energetic merger ejecta ${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$, thus excluding the presence of a powerful magnetar as a merger remnant. 
    more » « less