- Award ID(s):
- 1655499
- NSF-PAR ID:
- 10424095
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean - Variance Experiment (MVE) adds three novel elements to prior designs that have manipulated interannual variance in climate in the field (Gherardi & Sala, 2013) by (i) determining interactive effects of mean and variance with a factorial design that crosses reduced mean with increased variance, (ii) studying multiple dryland biomes to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And How does micro-environmental variation among plots influence how treatments alter soil moisture profiles over three soil depths? This data package includes sensor data from the Mean x Variance experiment in the Plains grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM, which is dominated by the grass species Bouteloua gracilis (blue grama).more » « less
-
Abstract Extensive ecological research has investigated extreme climate events or long‐term changes in average climate variables, but changes in year‐to‐year (interannual) variability may also cause important biological responses, even if the mean climate is stable. The environmental stochasticity that is a hallmark of climate variability can trigger unexpected biological responses that include tipping points and state transitions, and large differences in weather between consecutive years can also propagate antecedent effects, in which current biological responses depend on responsiveness to past perturbations. However, most studies to date cannot predict ecological responses to rising variance because the study of interannual variance requires empirical platforms that generate long time series. Furthermore, the ecological consequences of increases in climate variance could depend on the mean climate in complex ways; therefore, effective ecological predictions will require determining responses to both nonstationary components of climate distributions: the mean and the variance. We introduce a new design to resolve the relative importance of, and interactions between, a drier mean climate and greater climate variance, which are dual components of ongoing climate change in the southwestern United States. The Mean × Variance Experiment (MVE) adds two novel elements to prior field infrastructure methods: (1) factorial manipulation of variance together with the climate mean and (2) the creation of realistic, stochastic precipitation regimes. Here, we demonstrate the efficacy of the experimental design, including sensor networks and PhenoCams to automate monitoring. We replicated MVE across ecosystem types at the northern edge of the Chihuahuan Desert biome as a central component of the Sevilleta Long‐Term Ecological Research Program. Soil sensors detected significant treatment effects on both the mean and interannual variability in soil moisture, and PhenoCam imagery captured change in vegetation cover. Our design advances field methods to newly compare the sensitivities of populations, communities, and ecosystem processes to climate mean × variance interactions.
-
The Monsoon Rainfall Manipulation Experiment (MRME) is designed to understand changes in ecosystem structure and function of a semiarid grassland caused by increased precipitation variability, by altering rainfall pulses, and thus soil moisture, that drive primary productivity, community composition, and ecosystem functioning. The overarching hypothesis being tested is that changes in event size and frequency will alter grassland productivity, ecosystem processes, and plant community dynamics. Treatments include (1) a monthly addition of 20 mm of rain in addition to ambient, and a weekly addition of 5 mm of rain in addition to ambient during the months of July, August and September. We predict that soil N availability with interact with rainfall event size to alter net primary productivity during the summer monsoon. Specifically, productivity will be higher on fertilized relative to control plots, and productivity will be highest on N addition plots in treatments with a small number of large events because these events infiltrate deeper and soil moisture is available longer following large compared to small events.more » « less
-
Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability. Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed. Obviously, one of the important areas of interest in this experiment was the effects of elevated (greater-than-average) and decreased (less-than-average) precipitation levels on soil moisture. The volumetric water content of the soil was monitored across all twelve plots, all four treatment types, and all three cover types. The record created through these monitoring activities not only noted the initial “wetting-up” of the soil after a precipitation event but also tracked the “drying-down” of the soil after the event. The water content of the soil and its associated storage capacity could then provide a frame of reference in which changes in the physiological properties of our two target tree species, such as water potential and sapflow rate, could be interpreted.more » « less
-
Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability. Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed.more » « less