skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infrastructure to factorially manipulate the mean and variance of precipitation in the field
Abstract Extensive ecological research has investigated extreme climate events or long‐term changes in average climate variables, but changes in year‐to‐year (interannual) variability may also cause important biological responses, even if the mean climate is stable. The environmental stochasticity that is a hallmark of climate variability can trigger unexpected biological responses that include tipping points and state transitions, and large differences in weather between consecutive years can also propagate antecedent effects, in which current biological responses depend on responsiveness to past perturbations. However, most studies to date cannot predict ecological responses to rising variance because the study of interannual variance requires empirical platforms that generate long time series. Furthermore, the ecological consequences of increases in climate variance could depend on the mean climate in complex ways; therefore, effective ecological predictions will require determining responses to both nonstationary components of climate distributions: the mean and the variance. We introduce a new design to resolve the relative importance of, and interactions between, a drier mean climate and greater climate variance, which are dual components of ongoing climate change in the southwestern United States. The Mean × Variance Experiment (MVE) adds two novel elements to prior field infrastructure methods: (1) factorial manipulation of variance together with the climate mean and (2) the creation of realistic, stochastic precipitation regimes. Here, we demonstrate the efficacy of the experimental design, including sensor networks and PhenoCams to automate monitoring. We replicated MVE across ecosystem types at the northern edge of the Chihuahuan Desert biome as a central component of the Sevilleta Long‐Term Ecological Research Program. Soil sensors detected significant treatment effects on both the mean and interannual variability in soil moisture, and PhenoCam imagery captured change in vegetation cover. Our design advances field methods to newly compare the sensitivities of populations, communities, and ecosystem processes to climate mean × variance interactions.  more » « less
Award ID(s):
2142144 1655499
PAR ID:
10441414
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
7
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean x Variance Experiment (MVE) adds three novel elements to prior designs (Gherardi & Sala 2013) that have manipulated interannual variance in climate in the field by (i) determining interactive effects of mean and variance with a factorial design that crosses a drier mean with increased (more) variance, (ii) studying multiple dryland ecosystem types to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And, how does micro-environmental variation among plots influence how much MVE treatments alter soil moisture profiles over three soil depths? This data package includes soil moisture and temperature sensor data from the Mean x Variance Climate experiment in the Desert grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM. 
    more » « less
  2. We designed novel field experimental infrastructure to resolve the relative importance and interactions among changes in precipitation mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean x Variance Experiment (MVE) adds three novel elements to prior designs (Gherardi & Sala 2013) that have manipulated interannual variance in climate in the field by (i) determining interactive effects of mean and variance in a factorial design that crosses a drier mean with increased (more) variance, (ii) studying multiple dryland ecosystem types to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. We collected samples of soils, biological soil crusts, leaves of the foundation plant species, and roots of the two dominant grass species each year during peak productivity (September-October). These samples enable us to address the question: How do interactions between the mean and variance of precipitation alter the biogeochemistry and microbiomes of plants and soils. This data package includes accession numbers for all samples collected from the Mean x Variance Experiment at the Sevilleta National Wildlife Refuge, Socorro, NM. 
    more » « less
  3. We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean - Variance Experiment (MVE) adds three novel elements to prior designs that have manipulated interannual variance in climate in the field (Gherardi & Sala, 2013) by (i) determining interactive effects of mean and variance with a factorial design that crosses reduced mean with increased variance, (ii) studying multiple dryland biomes to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And How does micro-environmental variation among plots influence how treatments alter soil moisture profiles over three soil depths? This data package includes sensor data from the Mean x Variance experiment in the Plains grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM, which is dominated by the grass species Bouteloua gracilis (blue grama). 
    more » « less
  4. 1. Climate change is projected to cause shifts in precipitation regimes globally, leading to intensified periods of precipitation and droughts. Most studies that have explored the influence of changing precipitation regimes on ecosystems have focused on changes in mean annual precipitation, rather than the variance around the mean. Soil fungi are ubiquitous organisms that drive ecosystem processes, but it is unknown how they respond to long-term increased interannual precipitation variability. 2. Here, we investigated the influence of long-term increased precipitation variability and host type on soil fungal diversity and community composition in a dryland ecosystem. We collected 300 soil samples from two time points and different host type substrate types at a long-term precipitation variability experiment at the Jornada Long Term Ecological Research site. Next, we used amplicon sequencing to characterize soil fungal communities. 3. Soil fungal alpha diversity and community composition were strongly affected by host type and sampling year, and increased precipitation variability caused a modest, statistically insignificant, decrease in soil fungal evenness. Furthermore, results from our structural equational model showed that the decrease in grass-associated soil fungal richness was likely an indirect result of host decline in response to increased precipitation variability. 4. Synthesis. Our work demonstrates effects of increase in interannual precipitation variability on soil fungi, and that plant hosts play a key role in mediating soil fungal responses. 
    more » « less
  5. We designed novel field experimental infrastructure to resolve the relative importance of changes in the climate mean and variance in regulating the structure and function of dryland populations, communities, and ecosystem processes. The Mean - Variance Climate Experiment (MVE) adds three novel elements to prior designs that have manipulated interannual variance in climate in the field (Gherardi & Sala, 2013) by (i) determining interactive effects of mean and variance with a factorial design that crosses reduced mean with increased variance, (ii) studying multiple dryland biomes to compare their susceptibility to transition under interactive climate drivers, and (iii) adding stochasticity to our treatments to permit the antecedent effects that occur under natural climate variability. This new infrastructure enables direct experimental tests of the hypothesis that interactions between the mean and variance of precipitation will have larger ecological impacts than either the mean or variance in precipitation alone. A subset of plots have soil moisture and temperature sensors to evaluate treatment effectiveness by addressing, How do MVE manipulations alter the mean and variance in soil moisture and temperature? And How does micro-environmental variation among plots influence how treatments alter soil moisture profiles over three soil depths? This data package includes sensor data from the Mean - Variance Experiment in the Desert grassland ecosystem at the Sevilleta National Wildlife Refuge, Socorro, NM, which is dominated by the grass species Bouteloua eriopoda (black grama). 
    more » « less