skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Fire Seasonality on Chihuahuan Desert Grasslands at the Sevilleta National Wildlife Refuge, New Mexico (2007-2020)
Desert grassland vegetation is a key resource upon which rangelands in the southwestern US are built, and managing these ecosystems remains a critical challenge today. This experimental fire seasonality research project, in collaboration with the USFWS, USFS Rocky Mountain Research Station, and the Sevilleta LTER, is intended to provide land management agencies with information about vegetation recovery following fire under different seasonal conditions and burning treatments. This experimental research will enable the FWS to more effectively set project objectives for prescribed burning on the Sevilleta NWR to benefit not only wildlife habitat, but to better align the timing and intensity of fire to benefit the reestablishment of the dominant native grama grasses Bouteloua eriopoda and B. gracilis. Since its creation in 1973, management has been devoted to restoring the Sevilleta NWR to the natural conditions that might have been seen around the turn of the century. The Sevilleta NWR is an ideal place for research because climatic conditions, plant species composition and net primary production following wildfire have been well documented by the Sevilleta LTER. Additional experimental research is needed, however, to better inform managers about the timing and use of fire as an ecosystem restoration and management tool. This is an on-going, long-term experiment under the auspices of the Sevilleta LTER program.  more » « less
Award ID(s):
1655499
PAR ID:
10424114
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This dataset includes field-collected spectral reflectance of\n dominant vegetation species in grassland and shrubland at the\n Sevilleta National Wildlife Refuge collected monthly May \u2013 September\n 2019. A spectroradiometer was used to collect the percent spectral\n reflectance of electromagnetic radiation (range 400-2500nm) of a\n sample of dominant vegetation species ("spectra"),\n yielding a spectral curve for each species. At least ten individuals\n per species were sampled. These data form a spectral library which\n was used to calibrate a multiple-endmember spectral mixture analysis\n (MESMA) of satellite imagery of the Sevilleta NWR, as part of an\n ongoing collaboration between the LTER and the Center for the\n Advancement of Spatial Informatics Research and Education (ASPIRE).\n Ultimately, we aim to produce fractional images of green vegetation,\n non-photosynthetic vegetation, bare soil, and shade to form a\n synoptic thirty-year record of vegetation dynamics at the Refuge.\n The spectral library can be referenced by future researchers using\n remote sensing methods to examine vegetation dynamics at the\n Sevilleta NWR."]} 
    more » « less
  2. Disturbance from fire can affect the abundance and distribution of shrubs and grasses in arid ecosystems. In particular, fire may increase grass and forb production while hindering shrub encroachment. Therefore, prescribed fires are a common management tool for maintaining grassland habitats in the southwest. However, Bouteloua eriopoda (black grama), a dominant species in Chihuahuan Desert grassland, is highly susceptible to fire resulting in death followed by slow recovery rates. A prescribed fire on the Sevilleta National Wildlife refuge in central New Mexico in 2003 provided the opportunity to study the effects of infrequent fires on vegetation in this region. This study was conducted along a transition zone where creosote bushes (Larrea tridentata) are encroaching on a black grama grassland. Before and after the fire, above ground plant productivity and composition were monitored from 2003 to present. Following the prescribed fire, there were fewer individual grass clumps and less above ground grass cover in burned areas compared to unburned areas. This decrease in productivity was primarily from a loss of B. eriopoda. Specifically, B. eriopoda density and cover were significantly lower following the fire with a slow recovery rate in the five years following the fire. Other grasses showed no such adverse response to burning. Data were collected from 2004-2013 and 2018. Data were not collected for 2014-2017. 
    more » « less
  3. Abstract Restoring ecosystems in a changing climate requires understanding how management interventions interact with climate conditions. In tallgrass prairies, disturbance through fire, mowing, or grazing is a critical force in maintaining herbaceous plant diversity. However, unlike historical fire regimes that occurred throughout the growing season, management actions like prescribed fire and mowing are commonly limited to the spring or fall seasons. Warming winters are resulting in less snow, causing overwintering plants to experience reduced insulation from snow and these more extreme winter conditions may be exacerbated or ameliorated depending on the timing of management actions. Understanding this novel interaction between the timing of management actions and snow depth is critical for managing and restoring grassland ecosystems. Here, we applied experimental management treatments (spring and fall burn and fall mow) in combination with snow depth manipulations to test whether the type and timing of commonly implemented disturbances interact with snow depth to affect restored prairie plant diversity and composition. Overall, snow manipulations and management actions influenced soil temperature while only management actions influenced spring thaw timing. Burning in the fall, which removes litter prior to winter resulted in colder soils and earlier spring thaw timing. However, plant communities were mostly resistant to these effects. Instead, plants responded to management actions such that burning and mowing, regardless of timing, increased plant diversity and spring burning increased flowering structure cover while reducing weedy cool season grass cover. Together these results suggest that grassland plant communities are resistant to winter climate change over the short term and that burning or mowing is critical to promoting plant diversity in tallgrass prairies. 
    more » « less
  4. Abstract Many grass‐dominated ecosystems in dryland regions have experienced increasing woody plant density and abundance during the past century. In many cases, this process has led to land degradation and declines in ecosystem functions. An example is the Chihuahuan Desert in the southwestern United States, which experienced different stages of shrub encroachment in the past 150 years. Among a wide variety of mechanisms to explain the grass–shrub transitions in this dryland system, soil erosion (both wind and water) and fire are particularly well studied. Here, we synthesize recent developments on the drivers and feedback in the process of shrub encroachment in the Chihuahuan Desert through the intercomparison of two Long Term Ecological Research (LTER) sites, namely Jornada and Sevilleta. Experimental and modeling studies support a conceptual framework, which underscores the important roles of erosion and fire in woody plant encroachment. Collectively, research at the Jornada LTER provided complementary, quantitative support to the well‐known fertile‐islands framework. Studies at the Sevilleta LTER expanded the framework, adding fire as a major disturbance to woody plants. Conceptual models derived from the synthesis represent the general understanding of shrub encroachment that emerged from research at these two sites, and can guide management interventions aimed at reducing or mitigating undesirable ecosystem state change in many other drylands worldwide. 
    more » « less
  5. Humans are creating significant global environmental change, including shifts in climate, increased nitrogen (N) deposition, and the facilitation of species invasions. A multi-factorial field experiment is being performed in an arid grassland within the Sevilleta National Wildlife Refuge (NWR) to simulate increased nighttime temperature, higher N deposition, and heightened El Nino frequency (which increases winter precipitation by an average of 50%). The purpose of the experiment is to better understand the potential effects of environmental drivers on grassland community composition, aboveground net primary production and soil respiration. The focus is on the response of two dominant grasses (Bouteloua gracilis and B eriopoda), in an ecotone near their range margins and thus these species may be particularly susceptible to global environmental change. It is hypothesized that warmer summer temperatures and increased evaporation will favor growth of black grama (Bouteloua eriopoda), a desert grass, but that increased winter precipitation and/or available nitrogen will favor the growth of blue grama (Bouteloua gracilis), a shortgrass prairie species. Treatment effects on limiting resources (soil moisture, nitrogen availability, species abundance, and net primary production (NPP) are all being measured to determine the interactive effects of key global change drivers on arid grassland plant community dynamics and ecosystem processes. This dataset shows values of soil moisture, soil temperature, and the CO2 flux of the amount of CO2 that has moved from soil to air. On 4 August 2009 lightning ignited a ~3300 ha wildfire that burned through the experiment and its surroundings. Because desert grassland fires are patchy, not all of the replicate plots burned in the wildfire. Therefore, seven days after the wildfire was extinguished, the Sevilleta NWR Fire Crew thoroughly burned the remaining plots allowing us to assess experimentally the effects of interactions among multiple global change presses and a pulse disturbance on post-fire grassland dynamics. 
    more » « less