Abstract Root production influences carbon and nutrient cycles and subsidizes soil biodiversity. However, the long‐term dynamics and drivers of belowground production are poorly understood for most ecosystems. In drylands, fire, eutrophication, and precipitation regimes could affect not only root production but also how roots track interannual variability in climate.We manipulated the intra‐annual precipitation regime, soil nitrogen, and fire in four common Chihuahuan Desert ecosystem types (three grasslands and one shrubland) in New Mexico, USA, where the 100‐year record indicates both long‐term drying and increasing interannual variability in aridity. First, we evaluated how root production tracked aridity over 10–17 years using climate sensitivity functions, which quantify long‐term, nonlinear relationships between biological processes and climate. Next, we determined the degree to which perturbations by fire, nitrogen addition or intra‐annual rainfall altered the sensitivity of root production to both mean and interannual variability in aridity.All ecosystems had nonlinear climate sensitivities that predicted declines in production with increases in the interannual variance of aridity. However, root production was the most sensitive to aridity in Chihuahuan Desert shrubland, with reduced production under drier and more variable aridity.Among the perturbations, only fire altered the sensitivity of root production to aridity. Root production was more than twice as sensitive to declines with aridity following prescribed fire than in unburned conditions. Neither the intra‐annual seasonal rainfall regime nor chronic nitrogen fertilization altered the sensitivity of roots to aridity.Synthesis. Our results yield new insight into how dryland plant roots respond to climate change. Our comparison of dryland ecosystems of the northern Chihuahuan Desert predicted that root production in shrublands would be more sensitive to future climates that are drier and more variable than root production in dry grasslands. Field manipulations revealed that fire could amplify the climate sensitivity of dry grassland root production, but in contrast, the climate sensitivity of root production was largely resistant to changes in the seasonal rainfall regime or increased soil fertilization.
more »
« less
Long-term dynamics of soil organic matter and aboveground net primary production in a Chihuahuan Desert Grassland at the Sevilleta National Wildlife Refuge, New Mexico (1989-2014)
Drylands contain a third of the organic carbon stored in global soils; however, the long-term dynamics of soil organic carbon and soil organic matter (SOM) in drylands remain poorly understood relative to dynamics of the vegetation carbon pool. We examined long-term patterns in SOM against both climate and prescribed fire in a Chihuahuan Desert grassland in central New Mexico, USA. SOM was measured each spring and fall for 25 years (1989–2014) in unburned desert grassland and from 2003 to 2014 following a prescribed fire. SOM concentration from 0-20 cm depth did not show a clear long-term trend but fluctuated seasonally at both burned and unburned sites, ranging from a minimum of 0.9% to a maximum of 3.3%. SOM concentration declined nonlinearly in wet seasons and peaked in dry seasons. These results not only contrast with the positive relationships between aboveground net primary production and precipitation for this region, but also with previous reports of greater SOM in wetter sites across drylands globally, suggesting that space is not a good substitute for time in predicting the dynamics of dryland SOM. We suggest that declines in SOM in wet periods are caused by increased soil respiration, runoff, leaching, and soil erosion. In addition to tracking natural variability in climate, SOM concentration also decreased by 14% following prescribed fire, a response that magnified over time and has persisted for nearly a decade due to the slow recovery of primary production. Our results document the surprisingly dynamic nature of soil organic matter and its high sensitivity to climate and fire in this dryland ecosystem.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10424138
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aeolian sediment transport occurs as a function of, and with feedback to ecosystem changes and disturbances. Many desert grasslands are undergoing rapid changes in vegetation, including the encroachment of woody plants, which alters fire regimes and in turn can change the spatial and temporal patterns of aeolian sediment transport. We investigated aeolian sediment transport and spatial distribution of sediment in the surface soil for 7 years following a prescribed fire using a multiple rare earth element (REE) tracer‐based approach in a shrub‐encroached desert grassland in the northern Chihuahuan desert. Results indicate that even though the aeolian horizontal sediment mass flux increased approximately three‐fold in the first windy season in the burned areas compared to control areas, there were no significant differences after three windy seasons. The soil surface of bare microsites was the major contributor of aeolian sediments in unburned areas (87%), while the shrub microsites contributed the least (<2%) during the observation period. However, after the prescribed fire, the contribution of aeolian sediments from shrub microsites increased considerably (∼40%), indicating post‐fire microsite‐scale sediment redistribution. The findings of this study, which is the first to use multiple REE tracers for multi‐year analysis of the spatial and temporal dynamics of aeolian sediment transport, illustrate how disturbance by prescribed fire can influence aeolian processes and alters dryland soil geomorphology in which distinct soils develop over time at very fine spatial scales of individual plants.more » « less
-
Dryland environments are experiencing shifting ecogeomorphic patterns due to climatic changes and anthropogenic activities, resulting in a shift from grasslands to shrub-dominated landscapes. This dissertation investigates the effects from increasingly variable monsoonal precipitation and ecogeomorphic connectivity on perennial grass growth, litter distribution, and soil organic matter in drylands, with a focus on grass-shrub ecotones. Field experiments were conducted in the Chihuahuan Desert at the Jornada Basin Long-Term Ecological Research (LTER) site using a precipitation manipulation system and connectivity modifiers (ConMods) to assess their effects on plant productivity, recruitment, and soil nutrient distribution. Results show that reducing connectivity, combined with increased monsoonal precipitation, can enhance perennial grass productivity and recruitment, and affect the distribution of soil organic matter and non-photosynthetic vegetation. These findings contribute to our understanding of how aeolian processes and shifting precipitation regimes will shape vegetation patterns and soil properties in dryland environments under future climate scenarios. This research provides insights into potential mitigation strategies for combating shrub encroachment and promoting the sustainability of dryland ecosystems.more » « less
-
Disturbance from fire can affect the abundance and distribution of shrubs and grasses in arid ecosystems. In particular, fire may increase grass and forb production while hindering shrub encroachment. Therefore, prescribed fires are a common management tool for maintaining grassland habitats in the southwest. However, Bouteloua eriopoda (black grama), a dominant species in Chihuahuan Desert grassland, is highly susceptible to fire resulting in death followed by slow recovery rates. A prescribed fire on the Sevilleta National Wildlife refuge in central New Mexico in 2003 provided the opportunity to study the effects of infrequent fires on vegetation in this region. This study was conducted along a transition zone where creosote bushes (Larrea tridentata) are encroaching on a black grama grassland. Before and after the fire, above ground plant productivity and composition were monitored from 2003 to present. Following the prescribed fire, there were fewer individual grass clumps and less above ground grass cover in burned areas compared to unburned areas. This decrease in productivity was primarily from a loss of B. eriopoda. Specifically, B. eriopoda density and cover were significantly lower following the fire with a slow recovery rate in the five years following the fire. Other grasses showed no such adverse response to burning. Data were collected from 2004-2013 and 2018. Data were not collected for 2014-2017.more » « less
-
Abstract Drylands are often characterized by a pulse dynamics framework in which episodic rain events trigger brief pulses of biological activity and resource availability that regulate primary production. In the northern Chihuahuan Desert, growing season precipitation typically comes from monsoon rainstorms that stimulate soil microbial processes like decomposition, releasing inorganic nitrogen needed by plant processes. Compared to microbes, plants require greater amounts of soil moisture, typically from larger monsoon storms predicted to become less frequent and more intense in the future. Yet field‐based studies linking rainfall pulses with soil nutrient dynamics are rare. Consequently, little is known about how changes in rainfall patterns may affect plant available nitrogen in dryland soils, particularly across temporal scales. We measured daily and seasonal responses of soil inorganic nitrogen and related parameters to experimentally applied small frequent and large infrequent rain events throughout a summer growing season in a Chihuahuan Desert grassland. Contrary to long‐standing theories around resource pulse dynamics in drylands, nitrogen availability did not pulse following experimental rain events. Moreover, large infrequent events resulted in significantly less plant available nitrogen despite causing distinct pulses of increased soil moisture availability that persisted for several days. Overall, nitrogen availability increased over the growing season, especially following small frequent rain events that also stimulated some microbial ecoenzymatic activities. Our results suggest that projected changes in climate to fewer, larger rain events could significantly impact primary production in desert grasslands by decreasing plant available nitrogen when soil moisture is least limiting to plant growth.more » « less
An official website of the United States government
