skip to main content


Title: Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies
In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic “creep” in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines. NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.  more » « less
Award ID(s):
2015317
NSF-PAR ID:
10424249
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Neurophysiology
Volume:
128
Issue:
4
ISSN:
0022-3077
Page Range / eLocation ID:
790 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode 'naturalistic' stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femoro-tibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we utilized torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Further, use of 'naturalistic' stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations. 
    more » « less
  2. Meder, F. ; Hunt, A. ; Margheri, L. ; Mura, A. ; Mazzolai, B. (Ed.)
    Sensory feedback from sense organs during animal locomotion can be heavily influenced by an organism’s mechanical structure. In insects, the interplay between sensing and mechanics can be demonstrated in the campaniform sensilla (CS) strain sensors located across the exoskeleton. Leg CS are highly sensitive to the loading state of the limb. In walking, loading is primarily influenced by ground reaction forces (GRF) mediated by the foot, or tarsus. The complex morphology of the tarsus provides compliance, passive and active substrate grip, and an increased moment arm for the GRF, all of which impact leg loading and the resulting CS discharge. To increase the biomimicry of robots we use to study strain feedback during insect walking, we have developed a series of tarsi for our robotic model of a Carausius morosus middle leg. We seek the simplest design that mimics tarsus functionality. Tarsi were designed with varying degrees of compliance, passive grip, and biomimetic structure. We created elastic silicone tarsal joints for several of these models and found that they produced linear stiffness within joint limits across different joint morphologies. Strain gauges positioned in CS locations on the trochanterofemur and tibia recorded strain while the leg stepped on a treadmill. Most, but not all, designs increased axial strain magnitude compared to previous data with no tarsus. Every tarsus design produced positive transversal strain in the tibia, indicating axial torsion in addition to bending. Sudden increases in tibial strain reflected leg slipping during stance. This data show how different aspects of the tarsus may mediate leg loading, allowing us to improve the mechanical biomimicry of future robotic test platforms. 
    more » « less
  3. Hunt, Alexander ; Vouloutsi, Vasiliki ; Moses, Kenneth ; Quinn, Roger ; Mura, Anna ; Prescott, Tony ; Verschure, Paul F. (Ed.)
    Load sensing is critical for walking behavior in animals, who have evolved a number of sensory organs and neural systems to improve their agility. In particular, insects measure load on their legs using campaniform sensilla (CS), sensory neurons in the cuticle of high-stress portions of the leg. Extracellular recordings from these sensors in a behaving animal are difficult to collect due to interference from muscle potentials, and some CS groups are largely inaccessible due to their placement on the leg. To better understand what loads the insect leg experiences and what sensory feedback the nervous system may receive during walking, we constructed a dynamically-scaled robotic model of the leg of the stick insect Carausius morosus. We affixed strain gauges in the same positions and orientations as the major CS groups on the leg, i.e., 3, 4, 6A, and 6B. The robotic leg was mounted to a vertically-sliding linear guide and stepped on a treadmill to simulate walking. Data from the strain gauges was run through a dynamic model of CS discharge developed in a previous study. Our experiments reveal stereotypical loading patterns experienced by the leg, even as its weight and joint stiffness is altered. Furthermore, our simulated CS strongly signal the beginning and end of stance phase, two key events in the coordination of walking. 
    more » « less
  4. Animals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior. Recording from these sensors in freely moving animals is limited by technical constraints. To better understand the load feedback signaled by CS to the nervous system, we have constructed a dynamically scaled robotic model of the Carausius morosus stick insect middle leg. The leg steps on a treadmill and supports weight during stance to simulate body weight. Strain gauges were mounted in the same positions and orientations as four key CS groups (Groups 3, 4, 6B, and 6A). Continuous data from the strain gauges were processed through a previously published dynamic computational model of CS discharge. Our experiments suggest that under different stepping conditions (e.g., changing “body” weight, phasic load stimuli, slipping foot), the CS sensory discharge robustly signals increases in force, such as at the beginning of stance, and decreases in force, such as at the end of stance or when the foot slips. Such signals would be crucial for an insect or robot to maintain intra- and inter-leg coordination while walking over extreme terrain. 
    more » « less
  5. Meder, F. ; Hunt, A. ; Margheri, L. ; Mura, A. ; Mazzolai, B. (Ed.)
    Insects use various sensory organs to monitor proprioceptive and exteroceptive information during walking. The measurement of forces in the exoskeleton is facilitated by campaniform sensilla (CS), which monitor resisted muscle forces through the detection of exoskeletal strains. CS are commonly found in leg segments arranged in fields, groups, or as single units. Most insects have the highest density of sensor locations on the trochanter, a proximal leg segment. CS are arranged homologously across species, suggesting comparable functions despite noted morphological differences. Furthermore, the trochanter–femur joint is mobile in some species and fused in others. To investigate how different morphological arrangements influence strain sensing in different insect species, we utilized two robotic models of the legs of the fruit fly Drosophila melanogaster and the stick insect Carausius morosus. Both insect species are past and present model organisms for unraveling aspects of motor control, thus providing extensive information on sensor morphology and, in-part, function. The robotic models were dynamically scaled to the legs of the insects, with strain gauges placed with correct orientations according to published data. Strains were detected during stepping on a treadmill, and the sensor locations and leg morphology played noticeable roles in the strains that were measured. Moreover, the sensor locations that were absent in one species relative to the other measured strains that were also being measured by the existing sensors. These findings contributed to our understanding of load sensing in animal locomotion and the relevance of sensory organ morphology in motor control. 
    more » « less