The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink. 
                        more » 
                        « less   
                    
                            
                            An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation
                        
                    
    
            Abstract Tissue engineered cardiac patches have great potential as a regenerative therapy for myocardial infarction. Yet, the mutual interaction of cardiac patches with healthy tissue has not been completely understood. Here, we investigated the impact of acellular and cellular patches on a beating two-dimensional (2D) cardiac cell layer, and the effect of the beating of this layer on the cells encapsulated in the patch. We cultured human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) on a coverslip and placed gelatin methacryloyl hydrogel alone or with encapsulated iCMs to create acellular and cellular patches, respectively. When the acellular patch was placed on the cardiac cell layer, the beating characteristics and Ca+2 handling properties reduced, whereas placing the cellular patch restored these characteristics. To better understand the effects of the cyclic contraction and relaxation induced by the beating cardiac cell layer on the patch placed on top of it, a simulation model was developed, and the calculated strain values were in agreement with the values measured experimentally. Moreover, this dynamic culture induced by the beating 2D iCM layer on the iCMs encapsulated in the cellular patch improved their beating velocity and frequency. Additionally, the encapsulated iCMs were observed to be coupled with the underlying beating 2D iCM layer. Overall, this study provides a detailed investigation on the mutual relationship of acellular/cellular patches with the beating 2D iCM layer, understanding of which would be valuable for developing more advanced cardiac patches. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1651385
- PAR ID:
- 10424334
- Date Published:
- Journal Name:
- Journal of Biomechanical Engineering
- Volume:
- 145
- Issue:
- 8
- ISSN:
- 0148-0731
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cardiomyocytes (CMs) and fibroblast cells are two essential elements for cardiac tissue structure and function. The interactions between them can alter cardiac electrophysiology and thus contribute to cardiac diseases, such as arrhythmogenesis. One possible explanation is that fibroblasts can directly affect cardiac electrophysiology through electrical coupling with CMs. Therefore, detecting the electrical activities in the CM-fibroblast network is vital for understanding the coupling dynamics among them. Current commercialized platforms for studying cardiac electrophysiology utilize planar microelectrode arrays (MEAs) to record the extracellular field potential (FP) in real-time, but the prearranged electrode configuration highly limits the measurement capabilities at specific locations. Here, we report a custom-designed MEA device with a novel micropatterning method to construct a controlled network of neonatal rat CMs (rCMs) and fibroblast connections for monitoring the electrical activity of rCM-fibroblast co-cultures in a spatially controlled fashion. For the micropatterning of the co-culture, surface topographical features and mobile blockers were used to control the initial attachment locations of a mixture of rCMs and fibroblasts, to form separate beating rCM-fibroblast clusters while leaving empty space for fibroblast growth to connect these clusters. Once the blockers are removed, the proliferating fibroblasts connect and couple the separate beating clusters. Using this method, electrical activity of both rCMs and human-induced-pluripotent-stem-cell-derived cardiomyocytes (iCMs) was examined. The coupling dynamics were studied through the extracellular FP and impedance profile recorded from the MEA device, indicating that the fibroblast bridge provided an RC-type coupling of physically separate rCM-containing clusters and enabled synchronization of these clusters.more » « less
- 
            Abstract Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell–cell and cell‐matrix interactions. Significant post‐myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly‐oriented, type‐I collagen nanofiber (dia= 789 ± 162 nm) mats on the cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cells (BM‐MSC) spheroids, in the presence or absence of 10 μM 5‐azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time‐dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza‐treatment. Aza‐exposure improved connexin‐4 expression and sustained sarcomeric α‐actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza‐exposure. Although further quantitativein vitroandin vivostudies are needed to establish the clinical applicability of such stem‐cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM‐MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3303–3312, 2018.more » « less
- 
            Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation–induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light. Pulsed light stimulation of human cardiomyocytes showed that the optoelectronically active scaffold could increase their beating rates (>40%), maintain high cell viability under light stimulation (>96%), and negligibly affect the electrocardiogram morphology. The seeded scaffolds, termed optoelectronically active tissues, were able to successfully accelerate heart beating in vivo in rats. Our work demonstrates a viable wireless, printable, and optically controllable tissue, suggesting a transformative step in future therapy of electrically active tissues/organs.more » « less
- 
            There has been considerable progress in engineering cardiac scaffolds for the treatment of myocardial infarction (MI). However, it is still challenging to replicate the structural specificity and variability of cardiac tissues using traditional bioengineering approaches. In this study, a four-dimensional (4D) cardiac patch with physiological adaptability has been printed by beam-scanning stereolithography. By combining a unique 4D self-morphing capacity with expandable microstructure, the specific design has been shown to improve both the biomechanical properties of the patches themselves and the dynamic integration of the patch with the beating heart. Our results demonstrate improved vascularization and cardiomyocyte maturation in vitro under physiologically relevant mechanical stimulation, as well as increased cell engraftment and vascular supply in a murine chronic MI model. This work not only potentially provides an effective treatment method for MI but also contributes a cutting-edge methodology to enhance the structural design of complex tissues for organ regeneration.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    