Abstract The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are the closest massive satellite galaxies of the Milky Way. They are probably on their first passage on an infalling orbit towards our Galaxy 1 and trace the continuing dynamics of the Local Group 2 . Recent measurements of a high mass for the LMC ( M halo ≈ 10 11.1–11.4 M ⊙ ) 3–6 imply that the LMC should host a Magellanic Corona: a collisionally ionized, warm-hot gaseous halo at the virial temperature (10 5.3–5.5 K) initially extending out to the virial radius (100–130 kiloparsecs (kpc)). Such a corona would have shaped the formation of the Magellanic Stream 7 , a tidal gas structure extending over 200° across the sky 2,8,9 that is bringing in metal-poor gas to the Milky Way 10 . Here we show evidence for this Magellanic Corona with a potential direct detection in highly ionized oxygen (O +5 ) and indirectly by means of triply ionized carbon and silicon, seen in ultraviolet (UV) absorption towards background quasars. We find that the Magellanic Corona is part of a pervasive multiphase Magellanic circumgalactic medium (CGM) seen in many ionization states with a declining projected radial profile out to at least 35 kpc from the LMC and a total ionized CGM mass of log 10 ( M H II,CGM / M ⊙ ) ≈ 9.1 ± 0.2. The evidence for the Magellanic Corona is a crucial step forward in characterizing the Magellanic group and its nested evolution with the Local Group.
more »
« less
The Diffuse Ionized Gas Halo of the Large Magellanic Cloud
Abstract The Large Magellanic Cloud (LMC) has an extensive H α emission halo that traces an extended, warm ionized component of its interstellar medium. Using the Wisconsin H α Mapper telescope, we present the first kinematic H α survey of an extensive region around the LMC, from ( ℓ , b ) = (264.°5, − 45.°5) to (295.°5, − 19.°5), covering +150 ≤ v LSR ≤ + 390 km s −1 . We find that ionized hydrogen exists throughout the galaxy and extends several degrees beyond detected neutral hydrogen emission ( log N H I / cm − 2 ≈ 18.3 ) as traced by 21 cm in current surveys. Using the column density structure of the neutral gas and stellar line-of-sight depths as a guide, we estimate the upper limit mass of the ionized component of the LMC to be roughly M ionized ≈ (0.6–1.8) × 10 9 M ☉ , which is comparable to the total neutral atomic gas mass in the same region ( M neutral ≈ 0.76–0.85 × 10 9 M ☉ ). Considering only the atomic phases, we find M ionized / M ionized+neutral , to be 46%–68% throughout the LMC and its extended halo. Additionally, we find an ionized gas cloud that extends off of the LMC at ( ℓ , b ) ≈ (285°, − 28°) into a region previously identified as the Leading Arm complex. This gas is moving at a similar line-of-sight velocity as the LMC and has M ionized / M ionized+neutral = 13%–51%. This study, combined with previous studies of the SMC and extended structures of the Magellanic Clouds, continues to suggest that warm, ionized gas is as massive and dynamically important as the neutral gas in the Magellanic System.
more »
« less
- PAR ID:
- 10424447
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe, either by using FIR dust emission as a tracer of the ISM or by using spectroscopy of damped Ly α systems to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), Large Magellanic Cloud (LMC) ( Z = 0.5 Z ⊙ ), and Small Magellanic Cloud (SMC) ( Z = 0.2 Z ⊙ ). The relations between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N (H) > 21 cm −2 , the depletion of metallicity tracers (S, Zn) exceeds −0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6), compensating for the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are respective factors of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen.more » « less
-
The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here.more » « less
-
Abstract The resonantly scattered Ly α line illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Ly α emission in 12 relatively low-mass ( M ⋆ ∼ 10 9 M ⊙ ) z ∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Ly α blue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Ly α and absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the H i column density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the H i column density in the outer halos.more » « less
-
Abstract The interaction between the supersonic motion of the Large Magellanic Cloud (LMC) and the circumgalactic medium (CGM) is expected to result in a bow shock that leads the LMC’s gaseous disk. In this letter, we use hydrodynamic simulations of the LMC’s recent infall to predict the extent of this shock and its effect on the Milky Way’s (MW) CGM. The simulations clearly predict the existence of an asymmetric shock with a present-day standoff radius of ∼6.7 kpc and a transverse diameter of ∼30 kpc. Over the past 500 Myr, ∼8% of the MW’s CGM in the southern hemisphere should have interacted with the shock front. This interaction may have had the effect of smoothing over inhomogeneities and increasing mixing in the MW CGM. We find observational evidence of the existence of the bow shock in recent Hαmaps of the LMC, providing a potential explanation for the envelope of ionized gas surrounding the LMC. Furthermore, the interaction of the bow shock with the MW CGM may also explain the observations of ionized gas surrounding the Magellanic Stream. Using recent orbital histories of MW satellites, we find that many satellites have likely interacted with the LMC shock. Additionally, the dwarf galaxy Ret2 is currently sitting inside the shock, which may impact the interpretation of the reported gamma-ray excess in Ret2. This work highlights how bow shocks associated with infalling satellites are an underexplored yet potentially very important dynamical mixing process in the circumgalactic and intracluster media.more » « less
An official website of the United States government

