skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Four new Solenogastres (Mollusca, Aplacophora) from the South China Sea and paraphyly of Proneomeniidae Simroth, 1893
Solenogastres and Caudofoveata (Aplacophora) remain some of the least known molluscs, despite ubiquity in the marine environment and importance in understanding molluscan evolution. The use of new morphological techniques and development of DNA barcode libraries have helped make specimen identification easier. However, for solenogasters, using histology for identification and adequate description of species remains necessary in most cases. This, together with the facts that knowledge about solenogaster species distributions is biased and that most species were described from one or very few individuals, explains why many open questions about the actual distribution, intra- and interspecific variability, etc., remain. We performed an integrative taxonomic study of eight specimens of solenogasters from the South China Sea (West Pacific Ocean) thatresulted in the identification of four new species of Proneomeniidae. Species identification and description following the established diagnostic characters were straightforward. However, phylogenetic analysis of molecular data obtained from these specimens and other members of Proneomeniidae indicate that the family is polyphyletic. We recovered representatives of two other families, Epimeniidae (Epimenia) and Strophomeniidae (Anamenia), nested within Proneomeniidae with strong support. Ancestral character state reconstruction indicates that characters commonly used in solenogaster taxonomy, such as the radula and foregut glands, may be more evolutionarily labile in this group than previously known. Therefore our work fills knowledge gaps regarding the diversity and distribution of members of this family but raises important questions about solenogaster taxonomy and systematics that should be further assessed with additional markers and broader taxon sampling. ZooBank: urn:lsid:zoobank.org:pub:BCADACD6-9AD0-442A-AD64-031BA8D88599  more » « less
Award ID(s):
1846174
PAR ID:
10424516
Author(s) / Creator(s):
; ;
Editor(s):
Wilson, Nerida
Date Published:
Journal Name:
Invertebrate Systematics
Volume:
37
Issue:
6
ISSN:
1445-5226
Page Range / eLocation ID:
301 to 333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solenogastres (Mollusca, Aplacophora) are widespread across all oceans and depths, yet remain among the least understood molluscs. Despite frequent collection in deep-sea surveys, only 10% of species have been described from depths below 3500 m, largely due to the labor-intensive nature of their identifications. This study examines specimens from the DIVA 3 expedition (Me 79/1, 2009) in the Brazil Basin and describes three new abyssal species of Wirenia Odhner, 1921 (W. bertae sp. nov., W. meteori sp. nov., and W. opistodenticulata sp. nov.), the first formally described Gymnomeniidae from the abyss and the southern hemisphere. Using an integrative morphological approach (SEM, light microscopy, histology), we highlight the value of external sclerite characters for species delimitation. We also present a synthesis of known abyssal solenogaster diversity focused on the formally described taxa and outlining recent progress and future research priorities. Our findings emphasize the importance of deep-sea exploration and taxonomy in closing major knowledge gaps in marine biodiversity. 
    more » « less
  2. null (Ed.)
    So far, of the 292 known species of solenogasters (Mollusca, Aplacophora), 62 belong to the clade Pholidoskepia Salvini-Plawen, 1978. Of these, only two have an abyssal distribution (3500–6000 m depth). Among Pholidoskepia, Dondersiidae Simroth, 1893 is the most diverse family. This study contributes to the knowledge of this family with the description of one new genus and six new species from the abyssal South Atlantic Ocean: Dondersia ? foraminosa sp. n., Nematomenia divae sp. n., Nematomenia brasiliensis sp. n., Nematomenia ? guineana sp. n., Helluoherpia vieiralaneroi sp. n. and Inopinatamenia (gen. n.) calamitosa sp. n. Specimens were collected during DIVA (Latitudinal Gradients of Deep-Sea BioDIVersity in the Atlantic Ocean) expeditions in the Guinea (DIVA 2 Me 63/2, 2005) and Brazil (DIVA 3 Me 79/1, 2008) Basins. Specimens were characterized based primarily on the sclerites and internal anatomy, which was studied using histology. The importance of the radula and mantle sclerites for taxonomy is emphasized. Amended diagnoses for the family and some genera within this family are provided. This contribution increases the described diversity of Dondersiidae to ten genera and 38 species and highlights the need for more study of solenogasters in the deep sea. 
    more » « less
  3. null (Ed.)
    A new species of solenogaster (Mollusca, Aplacophora) from the Angola Basin is described: Macellomenia profundorum n. sp. The studied specimen was collected during the DIVA 1 expedition (Latitudinal Gradients of Deep-Sea BioDIVersity in the Atlantic Ocean). The description is based primarily on the sclerites and the internal anatomy (histological study). Macellomenia profundorum n. sp. is the first species of the family to be described from the southern hemisphere and constitutes its deepest record (5400 m deep). Even though only anterior anatomical characters are known, these and especially the radula and mantle sclerites are enough to justify that it is a new species. Amended diagnoses are also provided for the family and genus. 
    more » « less
  4. Camacho, Gabriela P (Ed.)
    Abstract The ant genus Nylanderia Emery has a cosmopolitan distribution and includes 150 extant described species and subspecies, with potentially hundreds more undescribed. Global taxonomic revision has long been stalled by strong intra- and interspecific morphological variation, limited numbers of diagnostic characters, and dependence on infrequently collected male specimens for species description and identification. Taxonomy is further complicated by Nylanderia being one of the most frequently intercepted ant genera at ports of entry worldwide, and at least 15 globetrotting species have widespread and expanding ranges, making species-level diagnoses difficult. Three species complexes (‘bourbonica complex’, ‘fulva complex’, and ‘guatemalensis complex’) include globetrotting species. To elucidate the phylogenetic positions of these three complexes and delimit species boundaries within each, we used target enrichment of ultraconserved elements (UCEs) from 165 specimens representing 98 Nylanderia morphospecies worldwide. We also phased the UCEs, effectively doubling sample size and increasing population-level sampling. After recovering strong support for the monophyly of each complex, we extracted COI barcodes and SNPs from the UCE data and tested within-complex morphospecies hypotheses using three molecular delimitation methods (SODA, bPTP, and STACEY). This comparison revealed that most methods tended to over-split taxa, but results from STACEY were most consistent with our morphospecies hypotheses. Using these results, we recommend species boundaries that are conservative and most congruent across all methods. This work emphasizes the importance of integrative taxonomy for invasive species management, as globetrotting occurs independently across at least nine different lineages across Nylanderia. 
    more » « less
  5. null (Ed.)
    Small red algal morphologically variable blades have been extensively collected from Hawaiian reefs, but for many specimens their taxonomy remains poorly understood. In surveys of the Papahānaumokuākea Marine National Monument (PMNM) and Main Hawaiian Islands (MHI), we discovered two taxa of undescribed small (< 5 cm) red blades that matched the genera Psaromenia and Meredithia, based on morphology and molecular analyses. Neither genus has been previously recorded in the Hawaiian Islands, and neither group of specimens matched currently described species in these two genera. Accordingly, these specimens are described here as new species within the family Kallymeniaceae. Psaromenia laulamaula sp. nov., exclusively found at mesophotic depths (83–94 m) in PMNM, is easily distinguished from other members of the genus by its comparatively large, procarpic carpogonial branch system and solitary obovate pink-tomagenta blades. Conversely, Meredithia hawaiiensis sp. nov., occurring in both shallow (0–17 m) and mesophotic depths (55 m), has high morphological plasticity, with characters that overlap with other Meredithia species, and can only be distinguished based on DNA sequences. This study provides additional evidence of the extent of diversity in the Kallymeniaceae that is poorly characterized from mesophotic depths and provides further evidence that members of the macroalgal flora contain overlooked biodiversity. 
    more » « less