skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
Abstract Predicting failure in solids has broad applications including earthquake prediction which remains an unattainable goal. However, recent machine learning work shows that laboratory earthquakes can be predicted using micro-failure events and temporal evolution of fault zone elastic properties. Remarkably, these results come from purely data-driven models trained with large datasets. Such data are equivalent to centuries of fault motion rendering application to tectonic faulting unclear. In addition, the underlying physics of such predictions is poorly understood. Here, we address scalability using a novel Physics-Informed Neural Network (PINN). Our model encodes fault physics in the deep learning loss function using time-lapse ultrasonic data. PINN models outperform data-driven models and significantly improve transfer learning for small training datasets and conditions outside those used in training. Our work suggests that PINN offers a promising path for machine learning-based failure prediction and, ultimately for improving our understanding of earthquake physics and prediction.  more » « less
Award ID(s):
2121005
PAR ID:
10424548
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Machine learning (ML) techniques have become increasingly important in seismology and earthquake science. Lab‐based studies have used acoustic emission data to predict time‐to‐failure and stress state, and in a few cases, the same approach has been used for field data. However, the underlying physical mechanisms that allow lab earthquake prediction and seismic forecasting remain poorly resolved. Here, we address this knowledge gap by coupling active‐source seismic data, which probe asperity‐scale processes, with ML methods. We show that elastic waves passing through the lab fault zone contain information that can predict the full spectrum of labquakes from slow slip instabilities to highly aperiodic events. The ML methods utilize systematic changes in P‐wave amplitude and velocity to accurately predict the timing and shear stress during labquakes. The ML predictions improve in accuracy closer to fault failure, demonstrating that the predictive power of the ultrasonic signals improves as the fault approaches failure. Our results demonstrate that the relationship between the ultrasonic parameters and fault slip rate, and in turn, the systematically evolving real area of contact and asperity stiffness allow the gradient boosting algorithm to “learn” about the state of the fault and its proximity to failure. Broadly, our results demonstrate the utility of physics‐informed ML in forecasting the imminence of fault slip at the laboratory scale, which may have important implications for earthquake mechanics in nature. 
    more » « less
  2. Abstract Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials. Physics-based simulation, including computational fluid dynamics (CFD), is the dominant approach to predict melt pool dynamics. However, the physics-based simulation approaches suffer from the inherent issue of very high computational cost. This paper provides a physics-informed machine learning method by integrating the conventional neural networks with the governing physical laws to predict the melt pool dynamics, such as temperature, velocity, and pressure, without using any training data on velocity and pressure. This approach avoids solving the nonlinear Navier–Stokes equation numerically, which significantly reduces the computational cost (if including the cost of velocity data generation). The difficult-to-determine parameters' values of the governing equations can also be inferred through data-driven discovery. In addition, the physics-informed neural network (PINN) architecture has been optimized for efficient model training. The data-efficient PINN model is attributed to the extra penalty by incorporating governing PDEs, initial conditions, and boundary conditions in the PINN model. 
    more » « less
  3. Abstract Machine learning can predict the timing and magnitude of laboratory earthquakes using statistics of acoustic emissions. The evolution of acoustic energy is critical for lab earthquake prediction; however, the connections between acoustic energy and fault zone processes leading to failure are poorly understood. Here, we document in detail the temporal evolution of acoustic energy during the laboratory seismic cycle. We report on friction experiments for a range of shearing velocities, normal stresses, and granular particle sizes. Acoustic emission data are recorded continuously throughout shear using broadband piezo‐ceramic sensors. The coseismic acoustic energy release scales directly with stress drop and is consistent with concepts of frictional contact mechanics and time‐dependent fault healing. Experiments conducted with larger grains (10.5 μm) show that the temporal evolution of acoustic energy scales directly with fault slip rate. In particular, the acoustic energy is low when the fault is locked and increases to a maximum during coseismic failure. Data from traditional slide‐hold‐slide friction tests confirm that acoustic energy release is closely linked to fault slip rate. Furthermore, variations in the true contact area of fault zone particles play a key role in the generation of acoustic energy. Our data show that acoustic radiation is related primarily to breaking/sliding of frictional contact junctions, which suggests that machine learning‐based laboratory earthquake prediction derives from frictional weakening processes that begin very early in the seismic cycle and well before macroscopic failure. 
    more » « less
  4. Microstructure-sensitive materials design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function. A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called the physics-informed neural network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of the Ti-7Al alloy by solving an inverse design problem to match the PINN-predicted final texture prediction and the experimental data. 
    more » « less
  5. Microstructure-sensitive material design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function (ODF). A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called Physics-Informed Neural Network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of Copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of Ti-7Al alloy by solving an inverse design problem to match PINN-predicted final texture prediction and the experimental data. 
    more » « less