Molecular additives are often used to enhance dynamic motion of polymeric chains, which subsequently alter the functional and physical properties of polymers. However, controlling the chain dynamics of semiconducting polymer thin films and understanding the fundamental mechanisms of such changes is a new area of research. Here, cycloparaphenylenes (CPPs) are used as conjugated molecular additives to tune the dynamic behaviors of diketopyrrolopyrrole‐based (DPP‐based) semiconducting polymers. It is observed that the addition of CPPs results in significant improvement in the stretchability of the DPP‐based polymers without adversely affecting their mobility, which arises from the enhanced polymer dynamic motion and reduced long‐range crystalline order. The polymer films retain their fiber‐like morphology and short‐range ordered aggregates, which leads to high mobility. Fully stretchable transistors are subsequently fabricated using CPP/semiconductor composites as active layers. These composites are observed to maintain high mobilities when strained and after repeated applied strains. Interestingly, CPPs are also observed to improve the contact resistance and charge transport of the fully stretchable transistors. ln summary, these results collectively indicate that controlling the dynamic motion of polymer semiconductors is proved to be an effective way to improve their stretchability.
Semiconductors with both high stretchability and self‐healing capability are highly desirable for various wearable devices. Much progress has been achieved in designing highly stretchable semiconductive polymers or composites. The demonstration of self‐healable semiconductive composite is still rare. Here, an extremely soft, highly stretchable, and self‐healable hydrogen bonding cross‐linked elastomer, amide functionalized‐polyisobutylene (PIB‐amide) is developed, to enable a self‐healable semiconductive composite through compounding with a high‐performance conjugated diketopyrrolopyrrole (DPP‐T) polymer. The composite, consisting of 20% DPP‐T and 80% PIB‐amide, shows record high crack‐onset strain (COS ≈1500%), extremely low elastic modulus (E≈1.6 MPa), and unique ability to spontaneously self‐heal atroom temperature within 5 min. Unlike previous works, these unique composite materials also show strain‐independent charge mobility. An in‐depth morphological study based on multi‐model techniques indicate that all composites show blending ratio‐ and stretching‐independent fibril‐like aggregation due to the strong hydrogen bond in elastomer to enable the unique stable charge mobility. This study provides a new direction to develop highly healable and electronically stable semiconductive composite and will enable new applications of stretchable electronics.
more » « less- Award ID(s):
- 2047689
- PAR ID:
- 10424562
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 42
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
A strain-induced electrically conductive liquid metal emulsion for the programmable assembly of soft conductive composites is reported. This emulsion exhibits the shear yielding and shear thinning rheology required for direct ink writing. Examples of complex self-supported 3D printed structures with spanning features are presented to demonstrate the 3D printability of this emulsion. Stretchable liquid metal composites are fabricated by integrating this emulsion into a multi-material printing process with a 3D printable elastomer. The as-printed composites exhibit a low electrical conductivity but can be transformed into highly conductive composites by a single axial strain at low stresses ([Formula: see text] 0.3 MPa), an order of magnitude lower than other mechanical sintering approaches. The effects of axial strain and cyclic loading on the electrical conductivities of these composites are characterized. The electrical conductivity increases with activation strain, with a maximum observed relaxed conductivity of 8.61 × 105S⋅m−1, more than 300% higher than other mechanical sintering approaches. The electrical conductivity of these composites reaches a steady state for each strain after one cycle, remaining stable with low variation ([Formula: see text] standard deviation) over 1000 cycles. The strain sensitivities of these composites are quantitatively analyzed. All samples exhibit strain sensitivities that are lower than a bulk conductor throughout all strains. The printed composites showed low hysteresis at high strains, and high hysteresis at low strains, which may be influenced by the emulsion internal structure. The utility of these composites is shown by employing them as wiring into a single fabrication process for a stretchable array of LEDs.
-
Abstract Numerous strategies are developed to impart stretchability to polymer semiconductors. Although these methods improve the ductility, mobility, and stability of such stretchable semiconductors, they nonetheless still need further improvement. Here, it is shown that 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) is an effective molecular additive to tune the properties of a diketopyrrolopyrrole‐based (DPP‐based) semiconductor. Specifically, the addition of F4‐TCNQ is observed to improve the ductility of the semiconductor by altering the polymer’s microstructures and dynamic motions. As a p‐type dopant additive, F4‐TCNQ can also effectively enhance the mobility and stability of the semiconductor through changing the host polymer’s packing structures and charge trap passivation. Upon fabricating fully stretchable transistors with F4‐TCNQ‐DPP blended semiconductor films, it is observed that the resulting stretchable transistors possess one of the highest initial mobility of 1.03 cm2V−1s−1. The fabricated transistors also exhibit higher stability (both bias and environmental) and mobility retention under repeated strain, compared to those without F4‐TCNQ additive. These findings offer a new direction of research on stretchable semiconductors to facilitate future practical applications.
-
On‐Demand Programming of Liquid Metal‐Composite Microstructures through Direct Ink Write 3D Printing
Abstract Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response.
-
Molecular Origin of Strain‐Induced Chain Alignment in PDPP‐Based Semiconducting Polymeric Thin Films
Abstract Donor–acceptor (D–A) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)‐based D–A polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side‐chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear‐chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side‐chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field‐effect transistors. This study deconvolutes the alignment of different components within the thin‐film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers.