Ettinger, Allyson; Pavlich, Ellie; Prickett, Brandon
                            (Ed.)
                        
                    
            
                            Morphological patterns can involve simple concatenation of fixed strings (e.g., unkind, kindness) or ‘nonconcatenative’ processes such as infixation (e.g., Chamorro l-um-iʔeʔ ‘saw (actor-focus)’, Topping, 1973) and reduplication (e.g., Amele ba-bagawen ‘as he came out’, Roberts, 1987), among many others (e.g., Anderson, 1992; Inkelas, 2014). Recent work has established that deep neural networks are capable of inducing both concatenative and nonconatenative patterns (e.g., Kannand Schütze, 2017; Nelson et al., 2020). In this paper, we verify that encoder-decoder networks can learn and generalize attested types of infixation and reduplication from modest training sets. We show further that the same networks readily learn many infixation and reduplication patterns that are unattested in natural languages, raising questions about their relationship to linguistic theory and viability as models of human learning. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    