skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Examining elementary and middle school mathematics instruction: are we promoting equity and access?
This descriptive study attended to the extent to which we see evidence of the presence of four practices that promote equity and access in 141 grades 3-8 mathematics lessons in the United States. We found that lessons generally showed evidence of some incorporation of the practices but often not at the highest level. Teachers in this sample engaged in social coaching at a relatively high level, across elementary and middle school classrooms. Teachers tended to do less with respect to supporting connection and engagement between student context and the math learning environment. We also found statistically significant differences between elementary and middle school lessons in positioning students as competent and supporting a nurturing environment by proactively building relationships and productive classroom culture. We offer possible interpretations and a few brief implications of these findings.  more » « less
Award ID(s):
1908481
PAR ID:
10424721
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
PROCEEDINGS OF THE 44TH ANNUAL MEETING OF THE NORTH AMERICAN CHAPTER OF THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF MATHEMATICS EDUCATION
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elementary teachers are underprepared to teach mathematics, and there is a lack of field‐based support for mathematics‐specific pedagogies in the elementary grades. To address this theory to practice gap, we developed an innovative model of fieldwork that draws on the expertise of in‐service teachers (elementary mathematics specialists [EMSs]) who had recently completed a K–5 mathematics endorsement to work in the role of university supervisors supporting beginning teachers (BTs) in initial fieldwork. We argue that this model has three key aspects that will support BTs bridging the theory to practice gap: (1) as in‐service teachers the EMSs are keenly connected to the context of schools; (2) recent experience in university coursework in mathematics while serving as in‐service teachers required the EMSs to navigate the theory to practice gap themselves; (3) one‐on‐one mentorship supports strong and trusting relationships. Drawing on data from a 3‐year study we found that EMSs brought intimate knowledge of the school context and knowledge of the mathematics‐specific pedagogies taught at the university. These connections to the field and the university allowed EMSs to support BTs in implementing research‐based practices in their mathematics lessons that went against the norms of their school settings. 
    more » « less
  2. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  3. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  4. This study examines prospective elementary teachers’ growth and development of competencies, conceptions, and perceptions of mathematical modelling in a mathematics content course for ele- mentary teachers. A series of lessons were implemented that engaged students in the modelling process through modelling tasks. The goal was to capture prospective teachers’ thoughts and per- ceptions on the meaning of mathematical modelling and their conceptions of teaching and learning modelling at the elementary and middle school level. The research questions were: (1) How do prospective teachers translate the mathematical modelling cycle into their practice of doing modelling? and (2) How do prospective teachers’ conceptions of modelling and teaching and learning modelling evolve throughout the implementation of a series of mathematical modelling lessons? Data sources included posters, modelling reports, responses to a pre- and post-intervention questionnaire, and semi-structured interview dialogue. Data analyses included mixed methods using provisional coding, open coding, and a categorical rubric. Findings from this study indicate that (1)Prospective elementary teachers translated the modelling cycle into their practice by developing their range of modelling competencies including multiple components of the modelling cycle, and (2) They developed a professionally appro- priate conception of mathematical modelling along with productive perceptions of the benefits of teaching and learning modelling. 
    more » « less
  5. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less