skip to main content


This content will become publicly available on June 2, 2024

Title: Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning
Award ID(s):
2019844
NSF-PAR ID:
10424778
Author(s) / Creator(s):
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper looks at technological advances in the collection and use of information about learning. Updating earlier discussions on transcripts and videorecording, the project used for examples in this paper features a digital simulation and pedagogical patterns where students met through videoconferencing as a post-pandemic alternative to table-base groupwork and then submitted transcripts of the meeting for evaluation and feedback. The transcripts were computationally analyzed to produce data streams showing the shape of conversations. These data were combined with records of students working on collaborative documents and the learning analytics for a digital simulation to illustrate new possibilities to depict collaborative student activity. Congruent with prior reflections on transcription of recordings and the recording process, this paper highlights the ways, old and new, the inscriptional process is not theory-neutral. It privileges certain activities and plays an agentive evidentiary role. 
    more » « less