skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Social media for emergency rescue: An analysis of rescue requests on Twitter during Hurricane Harvey
Award ID(s):
1931301
PAR ID:
10424811
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Disaster Risk Reduction
Volume:
85
Issue:
C
ISSN:
2212-4209
Page Range / eLocation ID:
103513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Environments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment. They predict that species traits will track a moving environmental optimum with a lag that approaches a constant. If fitness is negative at this lag, the species will go extinct. There have been many elaborations of these models incorporating increased genetic realism. Here, we review and explore the consequences of four ecological complications: non-quadratic fitness functions, interacting density- and trait-dependence, species interactions and fundamental limits to adaptation. We show that non-quadratic fitness functions can result in evolutionary tipping points and existential crises, as can the interaction between density- and trait-dependent mortality. We then review the literature on how interspecific interactions affect adaptation and persistence. Finally, we suggest an alternative theoretical framework that considers bounded environmental change and fundamental limits to adaptation. A research programme that combines theory and experiments and integrates across organizational scales will be needed to predict whether adaptation will prevent species extinction in changing environments. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’. 
    more » « less
  2. Abstract Populations declining due to climate change may need to evolve to persist. While evolutionary rescue has been demonstrated in theory and the lab, its relevance to natural populations facing climate change remains unknown. Here we link rapid evolution and population dynamics in scarlet monkeyflower,Mimulus cardinalis, during an exceptional drought. We leverage whole-genome sequencing across 55 populations to identify climate-associated loci. Simultaneously we track demography and allele frequency change throughout the drought. We establish range-wide population decline during the drought, geographically variable rapid evolution, and variable population recovery that is predictable by both standing genetic variation and rapid evolution at climate-associated loci. These findings demonstrate evolutionary rescue in the wild, showing that genomic variability at adaptive, but not neutral loci, predicts population recovery. 
    more » « less
  3. null (Ed.)