skip to main content

Title: Ecological limits to evolutionary rescue
Environments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment. They predict that species traits will track a moving environmental optimum with a lag that approaches a constant. If fitness is negative at this lag, the species will go extinct. There have been many elaborations of these models incorporating increased genetic realism. Here, we review and explore the consequences of four ecological complications: non-quadratic fitness functions, interacting density- and trait-dependence, species interactions and fundamental limits to adaptation. We show that non-quadratic fitness functions can result in evolutionary tipping points and existential crises, as can the interaction between density- and trait-dependent mortality. We then review the literature on how interspecific interactions affect adaptation and persistence. Finally, we suggest an alternative theoretical framework that considers bounded environmental change and fundamental limits to adaptation. A research programme that combines theory and experiments and integrates across organizational scales will be needed to predict whether adaptation will prevent species extinction in changing environments. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.  more » « less
Award ID(s):
1638958 1754250
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.

    more » « less
  2. As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas. 
    more » « less
  3. Environmental fluctuations are pervasive in nature, but the influence of non-directional temporal variation on range limits has received scant attention. We synthesize insights from the literature and use simple models to make conceptual points about the potentially wide range of ecological and evolutionary effects of temporal variation on range limits. Because organisms respond nonlinearly to environmental conditions, temporal variation can directionally alter long-term growth rates, either to shrink or to expand ranges. We illustrate this diversity of outcomes with a model of competition along a mortality gradient. Temporal variation can permit transitions between alternative states, potentially facilitating range expansion. We show this for variation in dispersal, using simple source–sink population models (with strong Allee effects, or with gene flow hampering local adaptation). Temporal variation enhances extinction risk owing to demographic stochasticity, rare events, and loss of genetic variation, all tending to shrink ranges. However, specific adaptations to exploit variation (including dispersal) may permit larger ranges than in similar but constant environments. Grappling with temporal variation is essential both to understand eco-evolutionary dynamics at range limits and to guide conservation and management strategies. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’. 
    more » « less
  4. Abstract

    Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.

    more » « less
  5. Abstract

    Local adaptation is a fundamental phenomenon in evolutionary biology, with relevance to formation of ecotypes, and ultimately new species, and application to restoration and species’ response to climate change. Reciprocal transplant gardens, a common garden in which ecotypes are planted among home and away habitats, are the gold standard to detect local adaptation in populations.

    This review focuses on reciprocal transplant gardens to detect local adaptation, especially in grassland species beginning with early seminal studies of grass ecotypes. Fast forward more than half a century, reciprocal gardens have moved into the genomic era, in which the genetic underpinnings of ecotypic variation can now be uncovered. Opportunities to combine genomic and reciprocal garden approaches offer great potential to shed light on genetic and environmental control of phenotypic variation. Our decadal study of adaptation in a dominant grass across the precipitation gradient of the US Great Plains combined genomic approaches and realistic community settings to shed light on controls over phenotype.

    Common gardens are not without limitations and challenges. A survey of recent studies indicated the modal study uses a tree species, three source sites and one growing site, focuses on one species growing in a monoculture, lasts 3 years, and does not use other experimental manipulations and rarely employs population genetic tools. Reciprocal transplant gardens are even more uncommon, accounting for only 39% of the studies in the literature survey with the rest occurring at a single common site. Reciprocal transplant gardens offer powerful windows into local adaptation when (a) placed across wide environmental gradients to encompass the species’ range; (b) conducted across timespans adequate for detecting responses; (c) employing selection studies among competing ecotypes in community settings and (d) combined with measurements of form and function which ultimately determine success in home and away environments.

    Synthesis. Reciprocal transplant gardens have been one of the foundations in evolutionary biology for the study of adaptation for the last century, and even longer in Europe. Moving forward, reciprocal gardens of foundational non‐model species, combined with genomic analyses and incorporation of biotic factors, have the potential to further revolutionize evolutionary biology. These field experiments will help to predict and model response to climate change and inform restoration practices.

    more » « less