- Award ID(s):
- 2015317
- PAR ID:
- 10424817
- Date Published:
- Journal Name:
- Biomimetic and Biohybrid Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Building an accurate computational model can clarify the basis of feeding behaviors in Aplysia californica. We introduce a specific circuitry model that emphasizes feedback integration. The circuitry uses a Synthetic Nervous System, a biologically plausible neural model, with motor neurons and buccal ganglion interneurons organized into 9 subnetworks realizing functions essential to feeding control during the protraction and retraction phases of feeding. These subnetworks are combined with a cerebral ganglion layer that controls transitions between feeding behaviors. This Synthetic Nervous System is connected to a simplified biomechanical model of Aplysia and afferent pathways provide proprioceptive and exteroceptive feedback to the controller. The feedback allows the model to coordinate and control its behaviors in response to the external environment. We find that the model can qualitatively reproduce multifunctional feeding behaviors. The kinematic and dynamic responses of the model also share similar features with experimental data. The results suggest that this neuromechanical model has predictive ability and could be used for generating or testing hypotheses about Aplysia feeding control.more » « less
-
Abstract Motor systems show an overall robustness, but because they are highly nonlinear, understanding how they achieve robustness is difficult. In many rhythmic systems, robustness against perturbations involves response of both the shape and the timing of the trajectory. This makes the study of robustness even more challenging. To understand how a motor system produces robust behaviors in a variable environment, we consider a neuromechanical model of motor patterns in the feeding apparatus of the marine mollusk Aplysia californica (Shaw et al. in J Comput Neurosci 38(1):25–51, 2015; Lyttle et al. in Biol Cybern 111(1):25–47, 2017). We established in (Wang et al. in SIAM J Appl Dyn Syst 20(2):701–744, 2021. https://doi.org/10.1137/20M1344974 ) the tools for studying combined shape and timing responses of limit cycle systems under sustained perturbations and here apply them to study robustness of the neuromechanical model against increased mechanical load during swallowing. Interestingly, we discover that nonlinear biomechanical properties confer resilience by immediately increasing resistance to applied loads. In contrast, the effect of changed sensory feedback signal is significantly delayed by the firing rates’ hard boundary properties. Our analysis suggests that sensory feedback contributes to robustness in swallowing primarily by shifting the timing of neural activation involved in the power stroke of the motor cycle (retraction). This effect enables the system to generate stronger retractor muscle forces to compensate for the increased load, and hence achieve strong robustness. The approaches that we are applying to understanding a neuromechanical model in Aplysia , and the results that we have obtained, are likely to provide insights into the function of other motor systems that encounter changing mechanical loads and hard boundaries, both due to mechanical and neuronal firing properties.more » « less
-
Abstract Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in
Aplysia californica . Using the Synthetic Nervous System framework, we developed a model ofAplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding. -
Creating soft robots with sophisticated, autonomous capabilities requires these systems to possess reliable, on-line proprioception of 3D configuration through integrated soft sensors. We present a framework for predicting a soft robot’s 3D configuration via deep learning using feedback from a soft, proprioceptive sensor skin. Our framework introduces a kirigami-enabled strategy for rapidly sensorizing soft robots using off-the-shelf materials, a general kinematic description for soft robot geometry, and an investigation of neural network designs for predicting soft robot configuration. Even with hysteretic, non-monotonic feedback from the piezoresistive sensors, recurrent neural networks show potential for predicting our new kinematic parameters and, thus, the robot’s configuration. One trained neural network closely predicts steady-state configuration during operation, though complete dynamic behavior is not fully captured. We validate our methods on a trunk-like arm with 12 discrete actuators and 12 proprioceptive sensors. As an essential advance in soft robotic perception, we anticipate our framework will open new avenues towards closed loop control in soft robotics.more » « less
-
Effective robotic systems must be able to produce desired motion in a sufficiently broad variety of robot states and environmental contexts. Classic control and planning methods achieve such coverage through the synthesis of model-based components. New applications and platforms, such as soft robots, present novel challenges, ranging from richer dynamical behaviors to increasingly unstructured environments. In these setups, derived models frequently fail to express important real-world subtleties. An increasingly popular approach to deal with this issue corresponds to end-to-end machine learning architectures, which adapt to such complexities through a data-driven process. Unfortunately, however, data are not always available for all regions of the operational space, which complicates the extensibility of these solutions. In light of these issues, this paper proposes a reconciliation of classic motion synthesis with modern data-driven tools towards the objective of ``deep coverage''. This notion utilizes the concept of composability, a feature of traditional control and planning methods, over data-derived ``motion elements'', towards generalizable and scalable solutions that adapt to real-world experience.more » « less