skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variational and phase response analysis for limit cycles with hard boundaries, with applications to neuromechanical control problems
Abstract Motor systems show an overall robustness, but because they are highly nonlinear, understanding how they achieve robustness is difficult. In many rhythmic systems, robustness against perturbations involves response of both the shape and the timing of the trajectory. This makes the study of robustness even more challenging. To understand how a motor system produces robust behaviors in a variable environment, we consider a neuromechanical model of motor patterns in the feeding apparatus of the marine mollusk Aplysia californica (Shaw et al. in J Comput Neurosci 38(1):25–51, 2015; Lyttle et al. in Biol Cybern 111(1):25–47, 2017). We established in (Wang et al. in SIAM J Appl Dyn Syst 20(2):701–744, 2021. https://doi.org/10.1137/20M1344974 ) the tools for studying combined shape and timing responses of limit cycle systems under sustained perturbations and here apply them to study robustness of the neuromechanical model against increased mechanical load during swallowing. Interestingly, we discover that nonlinear biomechanical properties confer resilience by immediately increasing resistance to applied loads. In contrast, the effect of changed sensory feedback signal is significantly delayed by the firing rates’ hard boundary properties. Our analysis suggests that sensory feedback contributes to robustness in swallowing primarily by shifting the timing of neural activation involved in the power stroke of the motor cycle (retraction). This effect enables the system to generate stronger retractor muscle forces to compensate for the increased load, and hence achieve strong robustness. The approaches that we are applying to understanding a neuromechanical model in Aplysia , and the results that we have obtained, are likely to provide insights into the function of other motor systems that encounter changing mechanical loads and hard boundaries, both due to mechanical and neuronal firing properties.  more » « less
Award ID(s):
2052109
PAR ID:
10433841
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biological Cybernetics
Volume:
116
Issue:
5-6
ISSN:
1432-0770
Page Range / eLocation ID:
687 to 710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase—and thus, the mechanical power output—of the wing steering muscles. 
    more » « less
  2. Abstract Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control inAplysia californica. Using the Synthetic Nervous System framework, we developed a model ofAplysiafeeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding. 
    more » « less
  3. Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug Aplysia californica’s feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the Aplysia feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot’s normalized translational and rotational kinematics of the odontophore followed profiles observed in vivo despite morphological differences. This brings Aplysia-inspired control in roboto one step closer to multifunctional neural control schema in vivo and in silico. Future additions may improve SLUGBOT’s viability as a neuromechanical research platform. 
    more » « less
  4. Building an accurate computational model can clarify the basis of feeding behaviors in Aplysia californica. We introduce a specific circuitry model that emphasizes feedback integration. The circuitry uses a Synthetic Nervous System, a biologically plausible neural model, with motor neurons and buccal ganglion interneurons organized into 9 subnetworks realizing functions essential to feeding control during the protraction and retraction phases of feeding. These subnetworks are combined with a cerebral ganglion layer that controls transitions between feeding behaviors. This Synthetic Nervous System is connected to a simplified biomechanical model of Aplysia and afferent pathways provide proprioceptive and exteroceptive feedback to the controller. The feedback allows the model to coordinate and control its behaviors in response to the external environment. We find that the model can qualitatively reproduce multifunctional feeding behaviors. The kinematic and dynamic responses of the model also share similar features with experimental data. The results suggest that this neuromechanical model has predictive ability and could be used for generating or testing hypotheses about Aplysia feeding control. 
    more » « less
  5. Abstract Proprioceptive sensory feedback is crucial for the control of movement. In many ways, sensorimotor control loops in the neuromuscular system act as state feedback controllers. These controllers combine input commands and sensory feedback regarding the mechanical state of the muscle, joint or limb to modulate the mechanical output of the muscles. To understand how these control circuits function, it is necessary to understand fully the mechanical state variables that are signalled by proprioceptive sensory (propriosensory) afferents. Using new computational approaches, we demonstrate how combinations of group Ia and II muscle spindle afferent feedback can allow for tuned responses to force and the rate of force (or length and velocity) and how combinations of muscle spindle and Golgi tendon organ feedback can parse external and internal (self‐generated) force. These models suggest that muscle spindle feedback might be used to monitor and control muscle forces in addition to length and velocity and, when combined with tendon organ feedback, can distinguish self‐generated from externally imposed forces. Given that these models combine feedback from different sensory afferent types, they emphasize the utility of analysing muscle propriosensors as an integrated population, rather than independently, to gain a better understanding of propriosensory–motor control. Furthermore, these models propose a framework that links neural connectivity in the spinal cord with neuromechanical control. Although considerable work has been done on propriosensory–motor pathways in the CNS, our aim is to build upon this work by emphasizing the mechanical context. 
    more » « less