- Award ID(s):
- 1846174
- PAR ID:
- 10424840
- Date Published:
- Journal Name:
- Diversity
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 1424-2818
- Page Range / eLocation ID:
- 996
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A multigene phylogenetic assessment of North American species of Mallocybe is presented based on analyses of rpb1, rpb2, ITS, and 28S rDNA nucleotide data. This framework enables a systematic revision of the genus for 16 eastern North American species and captures taxonomic and phylogenetic diversity in a global context. A grade of two unusual and poorly known North American species stems from the most recent common ancestor of the genus that gives rise to three core subgroups named here as clades Unicolores, Nothosperma, and Mallocybe. The grade of taxa includes the poorly known Lepista praevillosa from Florida and a new species from the southern Appalachians, M. montana, both of which appear to be narrow-range endemics. Clade Nothosperma is characterized by Australian and New Zealand species, whereas clade Unicolores is composed of six species from eastern North America and East Asia. Clade Mallocybe is dominated by numerous north temperate taxa and constitutes the sister group to clade Nothosperma. These major clades are distinguished by a combination of phylogeny, morphology, geographic distribution, and ecology. In addition, four North American species are described as new: M. leucothrix, M. luteobasis, M. montana, and M. tomentella. Several names originating in North America, long ignored or misunderstood in the literature, are revitalized and established by type comparisons and modern reference material collected from or near type localities. In addition, 11 species were subjected to mass spectrometry muscarine assays, none of which contained detectable amounts of muscarine except for two: M. sabulosa and M. praevillosa. This confirms a diffuse phylogenetic distribution of muscarine within the genus. Taxonomic descriptions are presented for 16 species, several synonymies proposed, and four new combinations made. A key to species of eastern North American Mallocybe is presented, along with illustrations of important diagnostic features.more » « less
-
Abstract Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither
Cyrtonaias norPsorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias ), Lampsilini (two lineages:Cyrtonaias explicata /Sphenonaias microdon , andPachynaias ), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the generaPsoronaias ,Psorula andPopenaias . The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae. -
Abstract Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of well-fixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.
-
Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of wellfixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.more » « less
-
The echinoid genus Tetrapygus was initially described by L. Agassiz (1841) based on a single species, Tetrapygus niger Molina, 1782. Since the extensive work conducted by Mortensen (1935), Tetrapygus has received limited taxonomic attention over the past century. Recent discoveries of new fossil species of Arbacia Gray, 1835 from the upper Pliocene of northern Chile revealed striking morphological similarities between the two distinct Arbaciidae genera Arbacia and Tetrapygus. These findings compelled new investigations to evaluate the taxonomic status of these genera. Based on molecular mitochondrial (COI), nuclear (28S), and morphological evidence, Tetrapygus niger is here recovered as the sister species to Arbacia dufresnii, both species forming a clade within the phylogeny of South American species of Arbacia. Consequently, the diagnosis and description of Tetrapygus niger are here revised, and the species is reattributed to Arbacia, as previously proposed by A. Agassiz in Agassiz & Desor (1846) under the species name Arbacia nigra. An emended diagnosis of Arbacia is also proposed in light of these new findings.