skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes
The effect of in-house synthesized hydrogels with different chemical compositions on the properties of alkali-activated slag pastes was examined. It was found that the teabag test and modified teabag test as a direct method and the flow test as an indirect method showed a similar trend in hydrogel absorption; however, the absorption values differ noticeably between the direct and indirect methods. The alkali-activated slag pastes with hydrogels demonstrated a significant reduction in autogenous shrinkage compared to the pastes without hydrogels. The creation of macrovoids by the hydrogels and change in pore structure resulted in a decrease in compressive strength and electrical resistivity of the pastes with hydrogels. The absorption and desorption of hydrogels in the pastes were tracked using X-ray microcomputed tomography (micro-CT), and it was shown that the onset of hydrogel desorption approximately coincided with the final setting time of the pastes.  more » « less
Award ID(s):
1846984 1920127
NSF-PAR ID:
10424921
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Gels
Volume:
8
Issue:
11
ISSN:
2310-2861
Page Range / eLocation ID:
731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper examines the influence of biochar on the properties of alkali-activated slag pastes using two activator solutions, namely NaOH and Na2CO3. The biochar demonstrated different absorption kinetics in the mixture of slag and the two activator solutions. The pastes with biochar showed a delay in the heat flow peak, compared to the pastes without biochar, but the cumulative heat release in these pastes at later hours was increased, compared to the pastes without biochar. It was found that the use of biochar reduced autogenous shrinkage in the pastes and the reduction in autogenous shrinkage was more pronounced in the alkali-activated slag with NaOH, compared to Na2CO3. The void structure of the pastes was investigated using x-ray micro-computed tomography. It was found that refined pore structure due to reduced effective solution/slag in the pastes with biochar was able to compensate for the decreasing effect of biochar voids on compressive strength. The electrical resistivity was shown to be lower in the pastes with biochar. 
    more » « less
  2. null (Ed.)
    The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic pore sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidated via the analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Moreover, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size. 
    more » « less
  3. In the last decade, 3D printing has attracted significant attention and has resulted in benefits to many research areas. Advances in 3D printing with smart materials at the microscale, such as hydrogels and liquid crystalline polymers, have enabled 4D printing and various applications in microrobots, micro-actuators, and tissue engineering. However, the material absorption of the laser power and the aberrations of the laser light spot will introduce a decay in the polymerization degree along the height direction, and the solution to this problem has not been reported yet. In this paper, a compensation strategy for the laser power is proposed to achieve homogeneous and high aspect ratio hydrogel structures at the microscale along the out-of-plane direction. Linear approximations for the power decay curve are adopted for height steps, discretizing the final high aspect ratio structures. The strategy is achieved experimentally with hydrogel structures fabricated by two-photon polymerization. Moreover, characterizations have been conducted to verify the homogeneity of the printed microstructures. Finally, the saturation of material property is investigated by an indirect 3D deformation method. The proposed strategy is proved to be effective and can be explored for other hydrogel materials showing significant deformation. Furthermore, the strategy for out-of-plane variations provides a critical technique to achieve 4D-printed homogeneous shape-adaptive hydrogels for further applications. 
    more » « less
  4. null (Ed.)
    The effect of hydrogels containing nanosilica (NSi) on the autogenous shrinkage, mechanical strength, and electrical resistivity of cement pastes was studied. The interaction between the hydrogels and the surrounding cementitious matrix was examined using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The addition of hydrogels decreased autogenous shrinkage in the cement pastes and this reduction showed a dependence on the concentration of NSi in the hydrogels. Compressive strength and electrical resistivity were reduced in the cement pastes with hydrogels and this reduction was decreased with increased concentration of NSi in the hydrogel. A change in the phase composition of the cement paste in the region close to the hydrogel was noted, compared to the region away from the hydrogel. In a lime solution with increased pH and temperature, Ca(OH)2 and CaCO3 were found to form within the hydrogels; evidence of calcium-silicate-hydrate (C-S-H) formation in the hydrogels with NSi was obtained, indicating the possible pozzolanic potential of the hydrogels with NSi. 
    more » « less
  5. null (Ed.)
    In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na 2 SiO 3 -activated slags, an important class of low-CO 2 cements, in conjunction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N 2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium–silicate–hydrate (C–(N)–A–S–H) gel, as confirmed by FTIR. In contrast, the Na 2 SiO 3 -activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied by conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product ( i.e. , C–(N)–A–S–H gel) as confirmed by FTIR and N 2 sorption data. Analysis of the QENS, FTIR and N 2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C–(N)–A–S–H gel) that is governed by the Na + ions and silicate species in Na 2 SiO 3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags. 
    more » « less