skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D printing assisted surface patterning process on acrylated hydrogels for contact guidance of fibroblasts
Generating stable and customizable topography on hydrogel surfaces with contact guidance potential is critical as it can direct/influence cell growth. This necessitates the development of new techniques for surface patterning of the hydrogels. We report on the design of a square grid template for surface patterning hydrogels. The template was 3-D printed and has the diameter of a well in a 24-well plate. Hyaluronic acid methacrylate (HA) hydrogel precursor solutions were cast on the 3D printed template’s surface, which generated 3D square shape topographies on the HA hydrogel surface upon demolding. The 3D Laser Microscopy has shown the formation of a periodic array of 3D topographies on hydrogel surfaces. 3D Laser and Electron Microscopy Imaging have revealed that this new method has increased the surface area and exposed the underlying pore structure of the HA hydrogels. To demonstrate the method’s versatility, we have successfully applied this technique to generate 3D topography on two more acrylate hydrogel formulations, gelatin Methacrylate and polyethylene glycol dimethacrylate. Human neonatal dermal fibroblast cells were used as a model cell line to evaluate the cell guidance potential of patterned HA hydrogel. Confocal fluorescence microscopy imaging has revealed that the 3D surface topographies on HA hydrogels can guide and align the actin filaments of the fibroblasts presumably due to the contact guidance mechanism. The newly developed methodology of 3D topography generation in acrylate hydrogels may influence the cell responses on hydrogel surfaces which can impact biomedical applications such as tissue engineering, wound healing, and disease modeling.  more » « less
Award ID(s):
2332041
PAR ID:
10543632
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Colloids and Surfaces B: Biointerfaces
Volume:
242
Issue:
C
ISSN:
0927-7765
Page Range / eLocation ID:
114099
Subject(s) / Keyword(s):
Hydrogels, Surface Patterning, Contact Guidance, Tissue Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct laser writing (DLW) via two‐photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two‐photon‐polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two‐photon‐polymerized microstructures are of keen interest. Here, a DLW‐fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell‐adhesive and cell‐repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells. 
    more » « less
  2. Surface topography represents a critical barrier to the advancement of additive manufacturing (AM). Because some internal features cannot be polished and because of the growing trend of in situ process monitoring, it is important to understand the as-built surface topography of AM components. Here we highlight the challenges of using industry-standard surface-measurement techniques on binder-jet-printed parts. We measured the topography of binder-jet-printed Inconel alloy 625 samples in their green state and over the course of sintering; this system allowed the investigation of identical starting materials undergoing systematic changes in topography. Specifically, we compared the results from industry-standard surface-measurement techniques—optical interferometry, 3D microscopy (by fringe projection), and stylus profilometry—against the “true topography,” as revealed by cross-sectional scanning electron microscopy. While the true topography changed significantly with sintering, the industry-standard techniques detected no change in the root-mean-square height because of complex surface features, including multi-scale topography, overhangs, and steep surface slopes. While these findings do not invalidate the use of industry-standard techniques for binder-jet-printed samples, they demonstrate a challenge in their application, and they motivate the development of new metrics and new techniques to more accurately describe surface topography in AM. 
    more » « less
  3. Abstract Macrophages are a predominant immune cell population that drive inflammatory responses and exhibit transitions in phenotype and function during tissue remodeling in disease and repair. Thus, engineering an immunomodulatory biomaterial has significant implications for resolving inflammation. Here, a biomimetic and photoresponsive hyaluronan (HA) hydrogel nanocomposite with tunable 3D extracellular matrix (ECM) adhesion sites for dynamic macrophage immunomodulation is engineered. Photodegradative alkoxylphenacyl‐based polycarbonate (APP) nanocomposites are exploited to permit user‐controlled Arg–Gly–Asp (RGD) adhesive peptide release and conjugation to a HA‐based ECM for real‐time integrin activation of macrophages encapsulated in 3D HA–APP nanocomposite hydrogels. It is demonstrated that photocontrolled 3D ECM–RGD peptide conjugation can activate αvβ3 integrin of macrophages, and periodic αvβ3 integrin activation can enhance anti‐inflammatory M2 macrophage polarization. Altogether, an emerging use of biomimetic, photoresponsive, and bioactive HA–APP nanocomposite hydrogel is highlighted to command 3D cell–ECM interactions for modulating macrophage polarization, which may shed light on cell–ECM interactions in innate immunity and inspire new biomaterial‐based immunomodulatory therapies. 
    more » « less
  4. Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM. 
    more » « less
  5. Abstract Hydrogel materials can be used to integrate bacteria cells into biohybrid systems. Here, we investigate the use of polyethylene glycol-based hydrogels that employ different Michael-type addition crosslinking chemistries, including thiol-acrylate, thiol-vinyl sulfone, and thiol-maleimide click reactions, for covalent hydrogel network formation and bacteria encapsulation. All crosslinking chemistries generated hydrogels that provided stable encapsulation and culture ofBacillus subtilis; however, significant differences in cell viability and cell morphology after encapsulation were identified. Thiol-acrylate hydrogels provided the highest cell viability and favored encapsulation of single cells, while thiol-maleimide hydrogels had the lowest cell viability and favored encapsulation of larger aggregates. These findings demonstrate the impact of crosslinking strategies for encapsulation of microorganisms into hydrogel networks and suggest that thiol-acrylate chemistries are favorable for many applications. Graphical abstract 
    more » « less