skip to main content


Title: Spring and latch dynamics can act as control pathways in ultrafast systems
Abstract Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.  more » « less
Award ID(s):
2015317
NSF-PAR ID:
10424943
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
18
Issue:
2
ISSN:
1748-3182
Page Range / eLocation ID:
026002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Across the tree of life – from fungi to frogs – organisms wield small amounts of energy to generate fast and potent movements. These movements are propelled with elastic structures, and their loading and release are mediated by latch-like opposing forces. They comprise a class of elastic mechanisms termed latch-mediated spring actuation (LaMSA). Energy flow through LaMSA begins when an energy source loads elastic element(s) in the form of elastic potential energy. Opposing forces, often termed latches, prevent movement during loading of elastic potential energy. As the opposing forces are shifted, reduced or removed, elastic potential energy is transformed into kinetic energy of the spring and propelled mass. Removal of the opposing forces can occur instantaneously or throughout the movement, resulting in dramatically different outcomes for consistency and control of the movement. Structures used for storing elastic potential energy are often distinct from mechanisms that propel the mass: elastic potential energy is often distributed across surfaces and then transformed into localized mechanisms for propulsion. Organisms have evolved cascading springs and opposing forces not only to serially reduce the duration of energy release, but often to localize the most energy-dense events outside of the body to sustain use without self-destruction. Principles of energy flow and control in LaMSA biomechanical systems are emerging at a rapid pace. New discoveries are catalyzing remarkable growth of the historic field of elastic mechanisms through experimental biomechanics, synthesis of novel materials and structures, and high-performance robotics systems. 
    more » « less
  2. Ultrafast organisms exemplify how biological systems manipulate and control energy to generate spectacularly diverse movements. Across the tree of life, repeateduse, ultrafastmovements are driven by springs and controlled by opposing, latch-like forces. We focus on the biomechanical processes that sequentially reduce the duration of each energetic event to yield intense mechanical power density - often external to the organism to reduce self-damage.We leverage a new model system of young, transparent mantis shrimp (Stomatopoda) to quantify the timing and dynamics of muscle contraction, storage of elastic potential energy, latch engagement and release, and the levers and linkages that transform elastic potential to kinetic energy of their ultrafast strikes. We examine how the convergence of physical limits and inherent evolutionary integration of biomechanical structures yield generalizable features of energy storage and energy delivery, such that these mechanisms occur exclusively in small systems.While ultrafast organisms have historically been invisibly fast to science, today’s technology and new model systems have unveiled effective experimental approaches to quantifying energetic control and manipulation in these intriguing biomechanical systems. 
    more » « less
  3. ABSTRACT Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s−1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s−2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms. 
    more » « less
  4. ABSTRACT Small organisms use propulsive springs rather than muscles to repeatedly actuate high acceleration movements, even when constrained to tiny displacements and limited by inertial forces. Through integration of a large kinematic dataset, measurements of elastic recoil, energetic math modeling and dynamic math modeling, we tested how trap-jaw ants (Odontomachus brunneus) utilize multiple elastic structures to develop ultrafast and precise mandible rotations at small scales. We found that O. brunneus develops torque on each mandible using an intriguing configuration of two springs: their elastic head capsule recoils to push and the recoiling muscle–apodeme unit tugs on each mandible. Mandibles achieved precise, planar, circular trajectories up to 49,100 rad s−1 (470,000 rpm) when powered by spring propulsion. Once spring propulsion ended, the mandibles moved with unconstrained and oscillatory rotation. We term this mechanism a ‘dual spring force couple’, meaning that two springs deliver energy at two locations to develop torque. Dynamic modeling revealed that dual spring force couples reduce the need for joint constraints and thereby reduce dissipative joint losses, which is essential to the repeated use of ultrafast, small systems. Dual spring force couples enable multifunctionality: trap-jaw ants use the same mechanical system to produce ultrafast, planar strikes driven by propulsive springs and for generating slow, multi-degrees of freedom mandible manipulations using muscles, rather than springs, to directly actuate the movement. Dual spring force couples are found in other systems and are likely widespread in biology. These principles can be incorporated into microrobotics to improve multifunctionality, precision and longevity of ultrafast systems. 
    more » « less
  5. Synopsis

    We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.

     
    more » « less