skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems
Synopsis We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.  more » « less
Award ID(s):
1941933 2019371
PAR ID:
10370439
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative Organismal Biology
Volume:
4
Issue:
1
ISSN:
2517-4843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Muscle fatigue can reduce performance potentially affecting an organism's fitness. However, some aspects of fatigue could be overcome by employing a latch-mediated spring actuated (LaMSA) system where muscle activity is decoupled from movement. We estimated the effects of muscle fatigue on different aspects of mandible performance in six species of ants, two whose mandibles are directly actuated by muscles and four that have LaMSA “trap-jaw” mandibles. We found evidence that the LaMSA system of trap-jaw ants may prevent some aspects of performance from declining with repeated use, including duration, acceleration, and peak velocity. However, inter-strike interval increased with repeated strikes suggesting that muscle fatigue still comes into play during the spring loading phase. In contrast, one species with directly actuated mandibles showed a decline in bite force over time. These results have implications for design principles aimed at minimizing the effects of fatigue on performance in spring and motor actuated systems. 
    more » « less
  2. Our ability to measure and image biology at small scales has been transformative for developing a new generation of insect-scale robots. Because of their presence in almost all environments known to humans, insects have inspired many small-scale flying, swimming, crawling, and jumping robots. This inspiration has affected all aspects of the robots’ design, ranging from gait specification, materials properties, and mechanism design to sensing, actuation, control, and collective behavior schemes. This article highlights how insects have inspired a new class of small and ultrafast robots and mechanisms. These new robots can circumvent motors’ force-velocity tradeoffs and achieve high-acceleration jumping, launching, and striking through latch-mediated spring-actuated (LaMSA) movement strategies. In the article, we apply a solution-driven bioinspired design framework to highlight the process for developing LaMSA-inspired robots and systems, starting with understanding the key biological themes, abstracting them to solution-neutral principles, and implementing such principles into engineered systems. Throughout the article, we emphasize the roles of modeling, fabrication, materials, and integration in developing bioinspired LaMSA systems and identify critical future enablers such as integrative design approaches. 
    more » « less
  3. Abstract The Orthoptera are a diverse insect order well known for their locomotive capabilities. To jump, the bush-cricket uses a muscle actuated (MA) system in which leg extension is actuated by contraction of the femoral muscles of the hind legs. In comparison, the locust uses a latch mediated spring actuated (LaMSA) system, in which leg extension is actuated by the recoil of spring-like structure in the femur. The aim of this study was to describe the jumping kinematics ofMecopoda elongata(Tettigoniidae) and compare this to existing data inSchistocerca gregaria(Acrididae), to determine differences in control of rotation during take-off between similarly sized MA and LaMSA jumpers. 269 jumps from 67 individuals ofM. elongatawith masses from 0.014 g to 3.01 g were recorded with a high-speed camera setup. InM. elongata, linear velocity increased with mass0.18and the angular velocity (pitch) decreased with mass−0.13. InS. gregaria, linear velocity is constant and angular velocity decreases with mass−0.24. Despite these differences in velocity scaling, the ratio of translational kinetic energy to rotational kinetic energy was similar for both species. On average, the energy distribution ofM. elongatawas distributed 98.8% to translational kinetic energy and 1.2% to rotational kinetic energy, whilst inS. gregariait is 98.7% and 1.3%, respectively. This energy distribution was independent of size for both species. Despite having two different jump actuation mechanisms, the ratio of translational and rotational kinetic energy formed during take-off is fixed across these distantly related orthopterans. 
    more » « less
  4. Abstract Latch-mediated spring actuation (LaMSA) systems leverage the interplay of springs and latches to rapidly accelerate a load. In biological systems, elastic energy is often distributed across multiple structures, resulting in forces applied from multiple springs. Here, we specifically examine dual spring force couples in torque reversal systems. A dual spring force couple applies forces from recoiling springs at two locations to generate torque. Torque reversal systems transition from spring loading to spring actuation through a change in torque direction. We develop a mathematical model of a dual spring force couple in a torque reversal system, where one spring is attached to the pivot point of the rigid body. During spring loading, this spring compresses to store elastic energy; during spring actuation, it recoils, driving pivot translation and contributing to rotation. We experimentally validate the model using a physical model. We then vary geometric parameters and the energy partition between the two springs to examine how these factors shape system dynamics. We show how variations in geometry and energy partition influence the rotational, translational, and coupling terms in the mathematical model. Finally, we demonstrate that the energetics of these systems must be carefully accounted for to accurately capture how potential energy is transformed into kinetic energy. We hypothesize that dual spring force couples in torque reversal systems may be prevalent in biological organisms, and that insights from this work can guide the design of spring-actuated mechanisms in robotics. 
    more » « less
  5. ABSTRACT Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s−2, 292.7 rad s−1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults – even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s−1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms. 
    more » « less