skip to main content


Title: Control of high-speed jumps: the rotation and energetics of the locust (Schistocerca gregaria)
Abstract Locusts ( Schistocerca gregaria ) jump using a latch mediated spring actuated system in the femur-tibia joint of their metathoracic legs. These jumps are exceptionally fast and display angular rotation immediately after take-off. In this study, we focus on the angular velocity, at take-off, of locusts ranging between 0.049 and 1.50 g to determine if and how rotation-rate scales with size. From 263 jumps recorded from 44 individuals, we found that angular velocity scales with mass −0.33 , consistent with a hypothesis of locusts having a constant rotational kinetic energy density. Within the data from each locust, angular velocity increased proportionally with linear velocity, suggesting the two cannot be independently controlled and thus a fixed energy budget is formed at take-off. On average, the energy budget of a jump is distributed 98.7% to translational kinetic energy and gravitational potential energy, and 1.3% to rotational kinetic energy. The percentage of energy devoted to rotation was constant across all sizes of locusts and represents a very small proportion of the energy budget. This analysis suggests that smaller locusts find it harder to jump without body rotation.  more » « less
Award ID(s):
2015317
NSF-PAR ID:
10424944
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Comparative Physiology B
ISSN:
0174-1578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How animals jump and land on diverse surfaces is ecologically important and relevant to bioinspired robotics. Here we describe the jumping biomechanics of the planthopper Lycorma delicatula (spotted lanternfly), an invasive insect in the US that jumps frequently for dispersal, locomotion, and predator evasion. High-speed video was used to analyze jumping by spotted lanternfly nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m s−1) and accelerations (800-1000 m s−2), with midair trajectories consistent with ballistic motion without drag forces or steering. Despite rotating rapidly (5-45 Hz) about time-varying axes of rotation, they landed successfully in 58.9% of trials. They also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of spotted lanternflies and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of the measured rotational kinematics. This analysis showed that the rotational inertia of spotted lanternfly nymphs is predominantly due to their legs, enabling them to use posture changes as well as drag torque to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.

     
    more » « less
  2. Synopsis Jumping is an important form of locomotion, and animals employ a variety of mechanisms to increase jump performance. While jumping is common in insects generally, the ability to jump is rare among ants. An exception is the Neotropical ant Gigantiops destructor (Fabricius 1804) which is well known for jumping to capture prey or escape threats. Notably, this ant begins a jump by rotating its abdomen forward as it takes off from the ground. We tested the hypotheses that abdominal rotation is used to either provide thrust during takeoff or to stabilize rotational momentum during the initial airborne phase of the jump. We used high speed videography to characterize jumping performance of G. destructor workers jumping between two platforms. We then anesthetized the ants and used glue to prevent their abdomens from rotating during subsequent jumps, again characterizing jump performance after restraining the abdomen in this manner. Our results support the hypothesis that abdominal rotation provides additional thrust as the maximum distance, maximum height, and takeoff velocity of jumps were reduced by restricting the movement of the abdomen compared with the jumps of unmanipulated and control treatment ants. In contrast, the rotational stability of the ants while airborne did not appear to be affected. Changes in leg movements of restrained ants while airborne suggest that stability may be retained by using the legs to compensate for changes in the distribution of mass during jumps. This hypothesis warrants investigation in future studies on the jump kinematics of ants or other insects. 
    more » « less
  3. ABSTRACT

    Rapidly rotating magnetars have been associated with gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe). Using a suite of two-dimensional magnetohydrodynamic simulations at fixed neutrino luminosity and a couple of evolutionary models with evolving neutrino luminosity and magnetar spin period, we show that magnetars are viable central engines for powering GRBs and SLSNe. We also present analytical estimates of the energy outflow rate from the proto-neutron star (PNS) as a function of polar magnetic field strength B0, PNS angular velocity Ω⋆, PNS radius R⋆, and mass outflow rate $\dot{M}$. We show that rapidly rotating magnetars with spin periods P⋆ ≲ 4 ms and polar magnetic field strength B0 ≳ 1015 G can release 1050 to 5 × 1051 erg of energy during the first ∼2 s of the cooling phase. Based on this result, it is plausible that sustained energy injection by magnetars through the relativistic wind phase can power GRBs. We also show that magnetars with moderate field strengths of B0 ≲ 5 × 1014 G do not release a large fraction of their rotational kinetic energy during the cooling phase and, hence, are not likely to power GRBs. Although we cannot simulate to times greater than ∼3–5 s after a supernova, we can hypothesize that moderate field strength magnetars can brighten the supernova light curves by releasing their rotational kinetic energy via magnetic dipole radiation on time-scales of days to weeks, since these do not expend most of their rotational kinetic energy during the early cooling phase.

     
    more » « less
  4. Synopsis Tails are widespread in the animal world and play important roles in locomotor tasks, such as propulsion, maneuvering, stability, and manipulation of objects. Kangaroo rats, bipedal hopping rodents, use their tail for balancing during hopping, but the role of their tail during the vertical evasive escape jumps they perform when attacked by predators is yet to be determined. Because we observed kangaroo rats swinging their tails around their bodies while airborne following escape jumps, we hypothesized that kangaroo rats use their tails to not only stabilize their bodies while airborne, but also to perform aerial re-orientations. We collected video data from free-ranging desert kangaroo rats (Dipodomys deserti) performing escape jumps in response to a simulated predator attack and analyzed the rotation of their bodies and tails in the yaw plane (about the vertical-axis). Kangaroo rat escape responses were highly variable. The magnitude of body re-orientation in yaw was independent of jump height, jump distance, and aerial time. Kangaroo rats exhibited a stepwise re-orientation while airborne, in which slower turning periods corresponded with the tail center of mass being aligned close to the vertical rotation axis of the body. To examine the effect of tail motion on body re-orientation during a jump, we compared average rate of change in angular momentum. Rate of change in tail angular momentum was nearly proportional to that of the body, indicating that the tail reorients the body in the yaw plane during aerial escape leaps by kangaroo rats. Although kangaroo rats make dynamic 3D movements during their escape leaps, our data suggest that kangaroo rats use their tails to control orientation in the yaw plane. Additionally, we show that kangaroo rats rarely use their tail length at full potential in yaw, suggesting the importance of tail movement through multiple planes simultaneously. 
    more » « less
  5. ABSTRACT Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20–40% longer than the front legs, which was attributable to longer tibiae. It took 5–6 ms to accelerate to take-off velocities reaching 4.65 m s−1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg−1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers. 
    more » « less