skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data
Abstract Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis—is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/BioKIT).  more » « less
Award ID(s):
2110404
PAR ID:
10424961
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Stajich, J
Date Published:
Journal Name:
Genetics
Volume:
221
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fay, Justin C. (Ed.)
    Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies. 
    more » « less
  2. Saitou, Naruya (Ed.)
    Abstract We present the Codon Statistics Database, an online database that contains codon usage statistics for all the species with reference or representative genomes in RefSeq (over 15,000). The user can search for any species and access two sets of tables. One set lists, for each codon, the frequency, the Relative Synonymous Codon Usage, and whether the codon is preferred. Another set of tables lists, for each gene, its GC content, Effective Number of Codons, Codon Adaptation Index, and frequency of optimal codons. Equivalent tables can be accessed for (1) all nuclear genes, (2) nuclear genes encoding ribosomal proteins, (3) mitochondrial genes, and (4) chloroplast genes (if available in the relevant assembly). The user can also search for any taxonomic group (e.g., “primates”) and obtain a table comparing all the species in the group. The database is free to access without registration at http://codonstatsdb.unr.edu. 
    more » « less
  3. Abstract Sequence alignment is an essential method in bioinformatics and the basis of many analyses, including phylogenetic inference, ancestral sequence reconstruction, and gene annotation. Sequencing artifacts and errors made during genome assembly, such as abiological frameshifts and incorrect early stop codons, can impact downstream analyses leading to erroneous conclusions in comparative and functional genomic studies. More significantly, while indels can occur both within and between codons in natural sequences, most amino-acid- and codon-based aligners assume that indels only occur between codons. This mismatch between biology and alignment algorithms produces suboptimal alignments and errors in downstream analyses. To address these issues, we present COATi, a statistical, codon-aware pairwise aligner that supports complex insertion–deletion models and can handle artifacts present in genomic data. COATi allows users to reduce the amount of discarded data while generating more accurate sequence alignments. COATi can infer indels both within and between codons, leading to improved sequence alignments. We applied COATi to a dataset containing orthologous protein-coding sequences from humans and gorillas and conclude that 41% of indels occurred between codons, agreeing with previous work in other species. We also applied COATi to semiempirical benchmark alignments and find that it outperforms several popular alignment programs on several measures of alignment quality and accuracy. 
    more » « less
  4. Abstract Multiple sequence alignments and phylogenetic trees are rich in biological information and are fundamental to research in biology. PhyKIT is a tool for processing and analyzing the information content of multiple sequence alignments and phylogenetic trees. Here, we describe how to use PhyKIT for diverse analyses, including (i) constructing a phylogenomic supermatrix, (ii) detecting errors in orthology inference, (iii) quantifying biases in phylogenomic data sets, (iv) identifying radiation events or lack of resolution using gene support frequencies, and (v) conducting evolution‐based screens to facilitate gene function prediction. Several PhyKIT functions that streamline multiple sequence alignment and phylogenetic processing—such as renaming FASTA entries or tree tips—are also discussed. These protocols demonstrate how simple command‐line operations in the unified framework of PhyKIT facilitate diverse phylogenomic data analysis and processing, from supermatrix construction and diagnosis to gaining clues about gene function. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Installing PhyKIT and syntax for usage Basic Protocol 2: Constructing a phylogenomic supermatrix Basic Protocol 3: Detecting anomalies in orthology relationships Basic Protocol 4: Quantifying biases in phylogenomic data matrices and related measures Basic Protocol 5: Identifying polytomies Basic Protocol 6: Assessing gene‐gene coevolution as a genetic screen 
    more » « less
  5. Abstract Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. It has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. We characterized codon usage across 1,154 strains from 1,051 species from the fungal subphylum Saccharomycotina to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns. We found a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is distinct between the 12 orders to such a degree that yeasts can be classified with an accuracy >90% using a machine learning algorithm. We also characterized the degree to which codon usage bias is impacted by translational selection. We found it was influenced by a combination of features, including the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that avoidance of the CGN codons is associated with a decline in arginine tRNA function. Consistent with previous findings, codon usage bias within the Saccharomycotina is shaped by genomic features and GC bias. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons. 
    more » « less