skip to main content


Title: Dolomite cement microstratigraphy: A record of brine evolution and ore precipitation mechanisms, upper Knox Group, Tennessee and Kentucky, USA
Abstract Trace element changes in fluids associated with ore-forming events in sedimentary basins may be recorded by contemporaneous cements, especially zoned carbonate minerals (microstratigraphy). Cement analysis using advanced mapping and analytical techniques including scanning electron microscopy cathodoluminescence (SEM-CL), charge contrast imaging, high-resolution X-ray computed tomography (XCT), and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) documents geochemical changes associated with Mississippi Valley–type mineralization in solution-collapse breccias of the Cambrian–Ordovician Knox Group (Tennessee and Kentucky, USA). Dolomite cement zonation coincident with changes in Fe and Mn can be observed with optical microscope CL in bands as narrow as 5 µm, whereas panchromatic SEM-CL reveals microfractures and cement subzones coincident with changes in La and Ce concentrations in bands as narrow as 0.1 µm. XCT scans image a high-density (Fe-rich) dolomite zone at the onset of late sulfide precipitation. The transition from pre-ore to ore-stage cementation is marked by increased Fe, Mn, Zn, Cd, Ga, Pb, and Sr and decreased La and Ce concentrations. Fine-scale metal depletion cycles during this transition may record metal precipitation from brine in response to the availability of reduced sulfur. Except for Fe and Mn, post-ore dolomite zones generally have low metal concentrations. Thus, dolomite microstratigraphy tracks systematic changes in brine metal concentrations modified by episodes of localized sulfide mineral precipitation.  more » « less
Award ID(s):
2223808
PAR ID:
10425053
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
51
Issue:
4
ISSN:
0091-7613
Page Range / eLocation ID:
392 to 396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oxygen‐deficient zones (ODZs) play an important role in the distribution and cycling of trace metals in the ocean, as important sources of metals including Fe and Mn, and also as possible sinks of chalcophile elements such as Cd. The Eastern Tropical North Pacific (ETNP) ODZ is one of the three largest ODZs worldwide. Here, we present results from two sectional surveys through the ETNP ODZ conducted in 2018, providing high‐resolution concentrations of several metals, along with complimentary measurements of nutrients and iodine speciation. We show that samples obtained from the ship's regular rosette are clean for Cd, Mn, Ni, and light rare earth elements, while uncontaminated Fe, Zn, Cu, and Pb samples cannot be obtained without a special trace‐metal clean sampling system. Our results did not show evidence of Cd sulfide precipitation, even within the most oxygen‐depleted water mass. High Mn and Ce concentrations and high Ce anomalies were observed in low‐oxygen seawater. These maxima were most pronounced in the upper water column below the oxycline, coincident with the secondary nitrite maxima and the lowest oxygen concentrations, in what is generally considered the most microbially active part of the water column. High Mn and Ce features were also coincident with maxima in excess iodine, a tracer of shelf sediment sources. Mn and Ce maxima were most prominent within the 13°C water mass, spanning a density horizon that enhances isopycnal transport from the shelf sediments, resulting in transport of Mn and Ce at least 2500 km offshore.

     
    more » « less
  2. Predicting the transport of toxic metals in dolomite saline aquifers where petroleum produced water (PW) is commonly injected is important to prevent underground sources of drinking water contamination. This study presents new experimental results on the degree and impact of precipitation and sorption reactions on the transport of high concentrations of toxic metals (80-100 mg-Ba/L, 80-100 mg-Sr/L, 70-100 mg-Cd/L, 2-100 mg-Pb/L, and 80-100 mg-As/L) in dolomite injected with PW of variable alkalinity (0–200 mg/L), total dissolved solids (1700–77,000 mg/L), and pH (2–7). Changes in the elemental and mineral composition of dolomite surface were measured by BSEs SEM, SEM-EDS, and high-resolution XRD analyses. The results reveal a key role of alkalinity generated from the dissolution of dolomite. We show that a short initial stage where the removal of toxic metals is driven by the initial pH and alkalinity of PW is followed by a prolonged stage where the removal of toxic metals by sorption and precipitation reactions is driven by the alkalinity and pH that results from the kinetic dissolution of dolomite. Precipitated/coprecipitated metals were carbonate minerals reflecting the metal composition of PW. Attained removal levels of tested toxic metals from 1 L of PW using a dolomite core made of 200 g were >90% for Pb, >50% for As, >30% for Cd, and >5% for Ba and Sr. Apparently, the in-situ generation of alkalinity (carbonate ions) and sorption reactions of metals on dolomite catalyzes the precipitation of toxic metals as carbonate minerals. This catalytic effect of dolomite is different with PW and fresh water (FW) of low salinity (NaCl). Precipitation reactions are more prominent with FW than with PW, whereas sorption reactions are more prominent with PW than with FW. 
    more » « less
  3. TiO 2 supported catalysts have been widely studied for the selective catalytic reduction (SCR) of NO x ; however, comprehensive understanding of synergistic interactions in multi-component SCR catalysts is still lacking. Herein, transition metal elements (V, Cr, Mn, Fe, Co, Ni, Cu, La, and Ce) were loaded onto TiO 2 nanoarrays via ion-exchange using protonated titanate precursors. Amongst these catalysts, Mn-doped catalysts outperform the others with satisfactory NO conversion and N 2 selectivity. Cu co-doping into the Mn-based catalysts promotes their low-temperature activity by improving reducibility, enhancing surface Mn 4+ species and chemisorbed labile oxygen, and elevating the adsorption capacity of NH 3 and NO x species. While Ce co-doping with Mn prohibits the surface adsorption and formation of NH 3 and NO x derived species, it boosts the N 2 selectivity at high temperatures. By combining Cu and Ce as doping elements in the Mn-based catalysts, both the low-temperature activity and the high-temperature N 2 selectivity are enhanced, and the Langmuir–Hinshelwood reaction mechanism was proved to dominate in the trimetallic Cu–Ce–5Mn/TiO 2 catalysts due to the low energy barrier. 
    more » « less
  4. Alkalinity is a critical parameter for describing the composition, pH buffer capacity, and precipitation potential of petroleum produced water (PW). Besides salinity, alkalinity and metal concentrations are generally greater in PW than in freshwater (FW) and seawater. This study presents batch reaction experimental and simulation results showing that the removal of Ba, Sr, and Cd from PW by dolomite is mostly due to sorption reactions, with sorption reactions and thus removal levels being higher for Cd than for Ba and Sr. In contrast, we found that the removal of Pb and As from PW by dolomite is largely due to precipitation and coprecipitation reactions of carbonate minerals on dolomite. Analyses of changes in the morphology as well as in the elemental and mineral composition of dolomite surface, along with pH, alkalinity, and Ba, Sr, Cd, Pb, and As removal measurements using synthetic PW and FW containing high concentrations (∼100 mg/L) of single and mixture toxic metals and metalloids (Ba, Sr, Cd, Pb, and As) at different initial alkalinity and pH conditions, indicate that in addition to salinity, alkalinity and pH generated from the dissolution of dolomite controls the removal of Ba, Sr, Cd, Pb, and As from PW by dolomite. However, we found that their impact is different for each metal in PW and FW. Ba, Sr, and Cd removal by dolomite is 10, 2, and 4 times smaller in PW than in freshwater (FW), respectively. Whereas As removal is practically the same regardless of salinity. Moreover, this study reveals the need of thermodynamic data of complex carbonate minerals formed from the precipitation of Ba, Sr, Cd, Pb, and As to capture the effect of alkalinity on their removal from PW by dolomite. 
    more » « less
  5. The suevite (polymict melt rock-bearing breccia) composing the upper peak ring of the Chicxulub impact crater is extremely heterogeneous, containing a combination of relict clasts and secondary minerals. Using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) and electron probe microanalysis (EPMA), we investigated the nature and occurrence of primary and secondary Fe-oxide and Fe-sulfide minerals to better understand hydrothermal trends such as mineral precipitation and dissolution, and to document the remobilization of Fe and associated siderophile elements within suevites. Large primary Fe-oxides (~20–100 µm) reveal decomposition and dissolution patterns, forming sub-micrometer to micrometer Fe-oxide phases. Secondary sub-micrometer Fe-oxide crystals are also visibly concentrated within clay. The occurrence of Fe-oxide crystals within clay suggests that these likely formed at temperatures ≤100 °C, near the formation temperature of smectite. The formation of Fe-oxide minerals on clay surfaces is of interest as it may form a micro-setting, where free electrons (from the oxidation of Fe2+) and the adsorption of simple organic molecules on the surface of clay could generate reactive conditions favorable to microbial communities. Primary and secondary Fe-sulfide minerals exhibiting a variety of morphologies are present within samples, representing different formation mechanisms. Secondary Fe-sulfide minerals occur within rims of clasts and vesicles and in fractures and voids. Some secondary Fe-sulfide grains are associated with Ni- and Co-rich phases, potentially reflecting the post-impact migration of siderophile elements within the suevite of the Chicxulub crater.

     
    more » « less