skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Transient “Changing-look” Active Galactic Nucleus Resolved on Month Timescales from First-year Sloan Digital Sky Survey V Data
Abstract We report the discovery of a new “changing-look” active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020–2021 shows a dramatic dimming of Δ g ≈ 1 mag, followed by a rapid recovery on a timescale of several months, with the ≲2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011–2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve.  more » « less
Award ID(s):
2206499 2108668 2009539 1945546 1911225 1911151
PAR ID:
10425085
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
939
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Active galactic nuclei (AGN) can vary significantly in their rest-frame optical/UV continuum emission, and with strong associated changes in broad line emission, on much shorter timescales than predicted by standard models of accretion disks around supermassive black holes. Most suchchanging-lookorchanging-stateAGN—and at higher luminosities, changing-look quasars (CLQs)—have been found via spectroscopic follow-up of known quasars showing strong photometric variability. The Time Domain Spectroscopic Survey of the Sloan Digital Sky Survey IV (SDSS-IV) includes repeat spectroscopy of large numbers of previously known quasars, many selected irrespective of photometric variability, and with spectral epochs separated by months to decades. Our visual examination of these repeat spectra for strong broad line variability yielded 61 newly discovered CLQ candidates. We quantitatively compare spectral epochs to measure changes in continuum and Hβbroad line emission, finding 19 CLQs, of which 15 are newly recognized. The parent sample includes only broad line quasars, so our study tends to find objects that have dimmed, i.e., turn-off CLQs. However, we nevertheless find four turn-on CLQs that meet our criteria, albeit with broad lines in both dim and bright states. We study the response of Hβand Mgiiemission lines to continuum changes. The Eddington ratios of CLQs are low, and/or their Hβbroad line width is large relative to the overall quasar population. Repeat quasar spectroscopy in the upcoming SDSS-V black hole Mapper program will reveal significant numbers of CLQs, enhancing our understanding of the frequency and duty cycle of such strong variability, and the physics and dynamics of the phenomenon. 
    more » « less
  2. Abstract “Changing-look” active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes ∼0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (≲2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (fEdd) systems: Our CL-AGNs have afEdddistribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson–Darling test yieldingpAD≈ 6 × 10−5; medianfEdd≈ 0.025 versus 0.043). This preference for lowfEddstrengthens previous findings of higher CL-AGN incidence at lowerfEdd, found in smaller samples. Finally, we show that the broad Mgiiemission line in our CL-AGN sample tends to vary significantly less than the broad Hβemission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics. 
    more » « less
  3. ABSTRACT We found a broad absorption line (BAL) outflow in the VLT/UVES spectrum of the quasar SDSS J235702.54−004824.0, in which we identified four subcomponents. We measured the column densities of the ions in one of the subcomponents (v = −1600 km s−1), which include O i and Fe ii. We found the kinetic luminosity of this component to be at most $$\sim 2.4{{\ \rm per\ cent}}$$ of the quasar’s Eddington luminosity. This is near the amount required to contribute to active galactic nucleus feedback. We also examined the time variability of a C iv mini-BAL found at v = −8700 km s−1, which shows a shallower and narrower absorption feature attached to it in previous SDSS observations from 2000 to 2001, but not in the spectra from 2005 and onwards. 
    more » « less
  4. Abstract We analyze Very Large Telescope/UVES observations of the quasar SDSS J024221.87+004912.6. We identify four absorption outflow systems: a Civbroad absorption line (BAL) atv≈ −18,000 km s−1and three narrower low-ionization systems with centroid velocities ranging from –1200 to –3500 km s−1. These outflows show similar physical attributes to the [Oiii] outflows studied by Liu et al. (2013). We find that two of the systems are energetic enough to contribute to active galactic nucleus feedback, with one system reaching above 5% of the quasar’s Eddington luminosity. We also find that this system is at a distance of 67 kpc away from the quasar, the farthest detected mini-BAL absorption outflow from its central source to date. In addition, we examine the time-variability of the BAL and find that its velocity monotonically increases, while the trough itself becomes shallower over time. 
    more » « less
  5. Abstract We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mgii, Hβ, and Hα) in the spectra of the luminous quasar (λLλ(5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz= 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars. 
    more » « less