- Award ID(s):
- 1846174
- PAR ID:
- 10425145
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1986
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The infraorder Astacidea, comprising marine clawed lobsters and freshwater crayfish, include some of the most recognizable decapod crustaceans, many being harvested commercially for human consumption and aquaculture. While molecular analyses have elucidated relationships among extant lineages, the composition and placement of several fossil groups within Astacidea remain poorly resolved, with several conflicting phylogenetic hypotheses and taxonomic classifications being proposed in previous works. Among these controversial groups, Erymoidea have variably been placed in Astacidea or Glypheidea, a largely extinct infraorder of predominantly pseudochelate marine lobsters. Cladistic relationships of Stenochiroidea have also been problematic, having been regarded as ancestral to freshwater crayfish (Astacida) or extant marine lobsters (Nephropidae). Failure to reach a consensus regarding these groups can be at least partially attributed to the prevalence of morphological convergence and limited taxon sampling. To clarify evolutionary relationships among fossil and extant taxa, a Bayesian phylogenetic analysis of morphological and molecular data (mitochondrial genes: 12S, 16S and COI; nuclear genes: 18S, 28S and H3) was performed that included extensive taxon sampling of all currently recognized families of Astacidea as well as representatives of several potential sister groups. To overcome error introduced by homoplasy, relationships among extant taxa, as revealed by previous molecular analyses, were used to identify morphological characters with potentially robust phylogenetic signal. The resulting phylogeny places erymids within Glypheidea and supports a sister relationship between Astacidea and Glaessnericarididae. Stenochiroidea was found to be polyphyletic, with most genera forming a clade sister to Nephropidae; Pseudastacus is moved to Protastacidae, which resolves as the sister taxon to freshwater crayfish. The relationships among living and fossil taxa presented here provide new insight into the origins and evolutionary histories of the major lineages of marine clawed lobsters and freshwater crayfish.more » « less
-
Abstract Neuroptera (lacewings) and allied orders Megaloptera (dobsonflies, alderflies) and Raphidioptera (snakeflies) are predatory insects and together make up the clade Neuropterida. The higher‐level relationships within Neuropterida have historically been widely disputed with multiple competing hypotheses. Moreover, the evolution of important biological innovations among various Neuropterida families, such as the origin, timing and direction of transitions between aquatic and terrestrial habitats of larvae, remains poorly understood. To investigate the origin and diversification of lacewings and their allies, we undertook phylogenetic analyses of mitochondrial genomes of all families of Neuropterida using Bayesian inference, maximum likelihood and maximum parsimony methods. We present a robust, fully resolved phylogeny and divergence time estimation for Neuropterida with strong statistical support for almost all nodes. Mitochondrial sequence data are typified by significant compositional heterogeneity across lineages, and parsimony and models assuming homogeneous rates did not recover Neuroptera as monophyletic. Only a model accounting for compositional heterogeneity (i.e.
CAT ‐GTR ) recovered all orders of Neuropterida as monophyletic. Significant findings of the mitogenomic phylogeny include recovering Raphidioptera as sister to Megaloptera plus Neuroptera. The sister family of all other lacewings are the dusty‐wings (Coniopterygidae), rather than Nevrorthidae. Nevrorthidae are instead returned to their traditional position as the sister group of the spongilla‐flies (Sisyridae) and closely related to Osmylidae. Our divergence time analysis indicates that the Mesozoic was indeed a ‘golden age’ for lacewings, with most families of Neuropterida diverging during the Triassic and Jurassic and all extant families present by the Early Cretaceous. Based on ancestral character state reconstructions of larval habitat we evaluate competing hypotheses regarding the life style of early neuropteridan larvae as either aquatic or terrestrial. -
Advanced sequencing technologies have expedited resolution of higher-level arthropod relationships. Yet, dark branches persist, principally among groups occurring in cryptic habitats. Among chelicerates, Solifugae ("camel spiders") is the last order lacking a higher-level phylogeny and have thus been historically characterized as "neglected [arachnid] cousins". Though renowned for aggression, remarkable running speed, and xeric adaptation, inferring solifuge relationships has been hindered by inaccessibility of diagnostic morphological characters, whereas molecular investigations have been limited to one of 12 recognized families. Our phylogenomic dataset via capture of ultraconserved elements sampling all extant families recovered a well-resolved phylogeny, with two distinct groups of New World taxa nested within a broader Paleotropical radiation. Divergence times using fossil calibrations inferred that Solifugae radiated by the Permian, and most families diverged prior to the Paleogene-Cretaceous extinction, likely driven by continental breakup. We establish Boreosolifugae new suborder uniting five Laurasian families, and Australosolifugae new suborder uniting seven Gondwanan families using morphological and biogeographic signal.more » « less
-
Pupko, Tal (Ed.)Abstract The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.more » « less
-
Abstract Clitellata is a major clade of Annelida comprising nearly all freshwater and terrestrial annelids as well as several marine species. We investigated clitellate phylogenetic relationships using transcriptomes sampled from 74 taxa (64 clitellates and 10 polychaetes), including multiple representatives of nearly all major clitellate higher taxa (Branchiobdellida, Capilloventridae, Crassiclitellata, Enchytraeidae, Haplotaxidae, Hirudinida, Lumbriculida, Moniligastridae, Naididae, Parvidrilidae, Phreodrilidae, Propappidae and Randiellidae). We used a number of filtered data matrices and phylogenetic analyses to examine the effects of data partitioning, missing data and compositional and branch‐length heterogeneity and used the resulting phylogenies for divergence time estimation and ancestral habitat reconstructions. All analyses and filtering methods produced a consistent, strongly supported topology in which (a) Enchytraeidae, Hirudinida, Hirudinea (here, Branchiobdellida plus Hirudinida), Lumbriculida, Lumbriculata (Lumbriculida plus Hirudinea), Phreodrilidae and Naididae are monophyletic, (b) a Parvidrilidae + Randiellidae clade is sister to the rest of Clitellata, (c) Phreodrilidae is sister to Naididae, (d) Haplotaxidae is non‐monophyletic, with some haplotaxids grouping with Crassiclitellata + Moniligastridae, (e) the Phreodrilidae + Naididae clade is sister to all other clitellates except Parvidrilidae + Randiellidae and Capilloventridae, and (f) Lumbriculata is sister to the Crassiclitellata + Moniligastridae + Haplotaxidae (in part) clade. Ancestral habitat reconstructions and divergence time analysis suggested that the most recent common ancestor of Clitellata lived in freshwater during the Devonian (419–359 million years ago) and that all major extant clitellate lineages arose over the next ~150 million years, with multiple lineages subsequently returning to marine habitats or invading land. This study provides a phylogenetic framework for further investigation of the geological, environmental and biotic forces and genomic changes that may have impacted clitellate evolution and enabled several major habitat transitions within this group.