Abstract Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)‐derived therapeutics. Toward this end, we demonstrate the xeno‐free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin‐producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+/SOX17+cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10‐ to 12‐fold increase in cell number over 5–6 days with the maintenance of pluripotency (>85% OCT4+) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+/SOX17+cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno‐free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell‐derived therapeutics. 
                        more » 
                        « less   
                    
                            
                            Intracellular pH dynamics regulates intestinal stem cell lineage specification
                        
                    
    
            Abstract Intracellular pH dynamics is increasingly recognized to regulate myriad cell behaviors. We report a finding that intracellular pH dynamics also regulates adult stem cell lineage specification. We identify an intracellular pH gradient in mouse small intestinal crypts, lowest in crypt stem cells and increasing along the crypt column. Disrupting this gradient by inhibiting H+efflux by Na+/H+exchanger 1 abolishes crypt budding and blocks differentiation of Paneth cells, which are rescued with exogenous WNT. Using single-cell RNA sequencing and lineage tracing we demonstrate that intracellular pH dynamics acts downstream of ATOH1, with increased pH promoting differentiation toward the secretory lineage. Our findings indicate that an increase in pH is required for the lineage specification that contributes to crypt maintenance, establishing a role for intracellular pH dynamics in cell fate decisions within an adult stem cell lineage. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1933240
- PAR ID:
- 10425196
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelidPristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such asvasa,piwiandnanoshomologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, inpiwi+cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories frompiwi+cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that apiwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.more » « less
- 
            Anisotropic environmental signals or polarized membrane ion/solute carriers can generate spatially varying intracellular gradients, leading to polarized cell dynamics. For example, the directional migration of neutrophils, galvanotaxis of glioblastoma, and water flux in kidney cells all result from the polarized distribution of membrane ion carriers and other intracellular components. The underlying physical mechanisms behind how polarized ion carriers interact with environmental signals are not well studied. Here, we use a physiology-relevant, physics-based mathematical model to reveal how ion carriers generate intracellular ion and voltage gradients. The model can discern the contribution of individual ion carriers to the intracellular pH gradient, electric potential, and water flux. We discover that an extracellular pH gradient leads to an intracellular pH gradient via chloride-bicarbonate exchangers, whereas an extracellular electric field leads to an intracellular electric potential gradient via passive potassium channels. In addition, mechanical-biochemical coupling can modulate actin distribution and flow, creating a biphasic dependence of cell speed on water flux. Moreover, we find that F-actin interaction with NHE alone can generate cell movement, even when other ion carriers are not polarized. Taken together, the model highlights the importance of cell ion dynamics in modulating cell migration and cytoskeletal dynamics. Published by the American Physical Society2024more » « less
- 
            Abstract Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs)in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation ofRUNX2gene expression and downregulation ofPPARGandIGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.more » « less
- 
            Efforts to direct the specification of human pluripotent stem cells (hPSCs) to therapeutically important somatic cell types have focused on identifying proper combinations of soluble cues. Yet, whether exosomes, which mediate intercellular communication, play a role in the differentiation remains unexplored. We took a first step toward addressing this question by subjecting hPSCs to stage-wise specification toward cardiomyocytes (CMs) in scalable stirred-suspension cultures and collecting exosomes. Samples underwent liquid chromatography (LC)/mass spectrometry (MS) and subsequent proteomic analysis revealed over 300 unique proteins from four differentiation stages including proteins such as PPP2CA, AFM, MYH9, MYH10, TRA2B, CTNNA1, EHD1, ACTC1, LDHB, and GPC4, which are linked to cardiogenic commitment. There was a significant correlation of the protein composition of exosomes with the hPSC line and stage of commitment. Differentiating hPSCs treated with exosomes from hPSC-derived CMs displayed improved efficiency of CM formation compared to cells without exogenously added vesicles. Collectively, these results demonstrate that exosomes from hPSCs induced along the CM lineage contain proteins linked to the specification process with modulating effects and open avenues for enhancing the biomanufacturing of stem cell products for cardiac diseases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
