skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover
Abstract The exceptional atmospheric conditions that have accelerated Greenland Ice Sheet mass loss in recent decades have been repeatedly recognized as a possible dynamical response to Arctic amplification. Here, we present evidence of two potentially synergistic mechanisms linking high-latitude warming to the observed increase in Greenland blocking. Consistent with a prominent hypothesis associating Arctic amplification and persistent weather extremes, we show that the summer atmospheric circulation over the North Atlantic has become wavier and link this wavier flow to more prevalent Greenland blocking. While a concomitant decline in terrestrial snow cover has likely contributed to this mechanism by further amplifying warming at high latitudes, we also show that there is a direct stationary Rossby wave response to low spring North American snow cover that enforces an anomalous anticyclone over Greenland, thus helping to anchor the ridge over Greenland in this wavier atmospheric state.  more » « less
Award ID(s):
1901603 1900324
PAR ID:
10425215
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains output from a prescribed model experiment conducted to investigate the impact of snow cover loss over North America on summer atmospheric circulation. We utilized the National Center for Atmospheric Research’s Community Earth System Model version 2.2 to complete a 10-year control simulation. We then modified the land-surface restart files for May 1st of each year of the control period by reducing the snow cover over North America to zero. Using these modified files, we then completed a reduced snow simulation by rerunning three-month simulations from May through July for each of the ten years. This dataset contains both the 10-year control simulation as well as the May–July “no-snow” simulations for each year. More details about the experimental setup and example output can be found in the following publication: Preece, J.R., Mote, T.L., Cohen, J. et al. Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat Commun 14, 3759 (2023). https://doi.org/10.1038/s41467-023-39466-6 
    more » « less
  2. Peter L. Langen (Ed.)
    Arctic Amplification is a fundamental feature of past, present, and modelled future climate. However, the causes of this “amplification” within Earth’s climate system are not fully understood. To date, warming in the Arctic has been most pronounced in autumn and winter seasons, with this trend predicted to continue based on model projections of future climate. Nevertheless, the mechanisms by which this will take place are numerous, interconnected. and complex. Will future Arctic Amplification be primarily driven by local, within-Arctic processes, or will external forces play a greater role in contributing to changing climate in this region? Motivated by this uncertainty in future Arctic climate, this review seeks to evaluate several of the key atmospheric circulation processes important to the ongoing discussion of Arctic amplification, focusing primarily on processes in the troposphere. Both local and remote drivers of Arctic amplification are considered, with specific focus given to high-latitude atmospheric blocking, poleward moisture transport, and tropical-high latitude subseasonal teleconnections. Impacts of circulation variability and moisture transport on sea ice, ice sheet surface mass balance, snow cover, and other surface cryospheric variables are reviewed and discussed. The future evolution of Arctic amplification is discussed in terms of projected future trends in atmospheric blocking and moisture transport and their coupling with the cryosphere. As high-latitude atmospheric circulation is strongly influenced by lower-latitude processes, the future state of tropical-to-Arctic teleconnections is also considered. 
    more » « less
  3. Abstract Consensus on the cause of recent midlatitude circulation changes toward a wavier manner in the Northern Hemisphere has not been reached, albeit a number of studies collectively suggest that this phenomenon is driven by global warming and associated Arctic amplification. Here, through a fingerprint analysis of various global simulations and a tropical heating-imposed experiment, we suggest that the suppression of tropical convection along the Inter Tropical Convergence Zone induced by sea surface temperature (SST) cooling trends over the tropical Eastern Pacific contributed to the increased summertime midlatitude waviness in the past 40 years through the generation of a Rossby-wave-train propagating within the jet waveguide and the reduced north-south temperature gradient. This perspective indicates less of an influence from the Arctic amplification on the observed mid-latitude wave amplification than what was previously estimated. This study also emphasizes the need to better predict the tropical Pacific SST variability in order to project the summer jet waviness and consequent weather extremes. 
    more » « less
  4. Abstract Human-induced warming is amplified in the Arctic, but its causes and consequences are not precisely known. Here, we review scientific advances facilitated by the Polar Amplification Model Intercomparison Project. Surface heat flux changes and feedbacks triggered by sea-ice loss are critical to explain the magnitude and seasonality of Arctic amplification. Tropospheric responses to Arctic sea-ice loss that are robust across models and separable from internal variability have been revealed, including local warming and moistening, equatorward shifts of the jet stream and storm track in the North Atlantic, and fewer and milder cold extremes over North America. Whilst generally small compared to simulated internal variability, the response to Arctic sea-ice loss comprises a non-negligible contribution to projected climate change. For example, Arctic sea-ice loss is essential to explain projected North Atlantic jet trends and their uncertainty. Model diversity in the simulated responses has provided pathways to observationally constrain the real-world response. 
    more » « less
  5. The rapid loss of Arctic sea ice is a striking consequence of anthropogenic global warming. Its remote impacts on mid‐latitude weather and climate have attracted scientific and media attention. In this study, we use a hybrid (dynamical plus machine‐learning) atmospheric model—Google's NeuralGCM—to investigate the mid‐latitude atmospheric circulation responses to Arctic sea‐ice loss for the first time. We conduct experiments in which NeuralGCM is forced with pre‐industrial and future sea‐ice concentrations following the protocol of the Polar Amplification Model Intercomparisom Project. To assess the performance of NeuralGCM, we compare the results with those simulated by two physics‐based climate models. NeuralGCM produces a comparable response of near‐surface warming to sea‐ice loss and the subsequent weakened zonal wind in mid‐latitudes. However, there is a substantial discrepancy between the two models' stratospheric responses, where different temperature responses in these models are associated with different zonal wind and geopotential height responses. Further investigation of North Atlantic blocking shows that NeuralGCM produces stronger, more frequent, and more realistic blocking events. Our results demonstrate the capability of NeuralGCM in simulating the tropospheric responses to Arctic sea‐ice loss, but improvements may be needed for the stratospheric representation. 
    more » « less