skip to main content


Title: Constructing small genome graphs via string compression
Abstract Motivation

The size of a genome graph—the space required to store the nodes, node labels and edges—affects the efficiency of operations performed on it. For example, the time complexity to align a sequence to a graph without a graph index depends on the total number of characters in the node labels and the number of edges in the graph. This raises the need for approaches to construct space-efficient genome graphs.

Results

We point out similarities in the string encoding mechanisms of genome graphs and the external pointer macro (EPM) compression model. We present a pair of linear-time algorithms that transform between genome graphs and EPM-compressed forms. The algorithms result in an upper bound on the size of the genome graph constructed in terms of an optimal EPM compression. To further reduce the size of the genome graph, we propose the source assignment problem that optimizes over the equivalent choices during compression and introduce an ILP formulation that solves that problem optimally. As a proof-of-concept, we introduce RLZ-Graph, a genome graph constructed based on the relative Lempel–Ziv algorithm. Using RLZ-Graph, across all human chromosomes, we are able to reduce the disk space to store a genome graph on average by 40.7% compared to colored compacted de Bruijn graphs constructed by Bifrost under the default settings. The RLZ-Graph scales well in terms of running time and graph sizes with an increasing number of human genome sequences compared to Bifrost and variation graphs produced by VGtoolkit.

Availability

The RLZ-Graph software is available at: https://github.com/Kingsford-Group/rlzgraph.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
Award ID(s):
1937540
NSF-PAR ID:
10425385
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
Supplement_1
ISSN:
1367-4803
Page Range / eLocation ID:
p. i205-i213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using ‘long read’ technologies like those offered by PacBio or Oxford Nanopore), efficient k-mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k-mer occurs, which is key in transcriptome assemblers.

    Results

    We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18–28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.

    Availability and implementation

    https://github.com/splatlab/debgr.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    Intra-sample heterogeneity describes the phenomenon where a genomic sample contains a diverse set of genomic sequences. In practice, the true string sets in a sample are often unknown due to limitations in sequencing technology. In order to compare heterogeneous samples, genome graphs can be used to represent such sets of strings. However, a genome graph is generally able to represent a string set universe that contains multiple sets of strings in addition to the true string set. This difference between genome graphs and string sets is not well characterized. As a result, a distance metric between genome graphs may not match the distance between true string sets.

    Results

    We extend a genome graph distance metric, Graph Traversal Edit Distance (GTED) proposed by Ebrahimpour Boroojeny et al., to FGTED to model the distance between heterogeneous string sets and show that GTED and FGTED always underestimate the Earth Mover’s Edit Distance (EMED) between string sets. We introduce the notion of string set universe diameter of a genome graph. Using the diameter, we are able to upper-bound the deviation of FGTED from EMED and to improve FGTED so that it reduces the average error in empirically estimating the similarity between true string sets. On simulated T-cell receptor sequences and actual Hepatitis B virus genomes, we show that the diameter-corrected FGTED reduces the average deviation of the estimated distance from the true string set distances by more than 250%.

    Availability and implementation

    Data and source code for reproducing the experiments are available at: https://github.com/Kingsford-Group/gtedemedtest/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    In the past few years, researchers have proposed numerous indexing schemes for searching large datasets of raw sequencing experiments. Most of these proposed indexes are approximate (i.e. with one-sided errors) in order to save space. Recently, researchers have published exact indexes—Mantis, VariMerge and Bifrost—that can serve as colored de Bruijn graph representations in addition to serving as k-mer indexes. This new type of index is promising because it has the potential to support more complex analyses than simple searches. However, in order to be useful as indexes for large and growing repositories of raw sequencing data, they must scale to thousands of experiments and support efficient insertion of new data.

    Results

    In this paper, we show how to build a scalable and updatable exact raw sequence-search index. Specifically, we extend Mantis using the Bentley–Saxe transformation to support efficient updates, called Dynamic Mantis. We demonstrate Dynamic Mantis’s scalability by constructing an index of ≈40K samples from SRA by adding samples one at a time to an initial index of 10K samples. Compared to VariMerge and Bifrost, Dynamic Mantis is more efficient in terms of index-construction time and memory, query time and memory and index size. In our benchmarks, VariMerge and Bifrost scaled to only 5K and 80 samples, respectively, while Dynamic Mantis scaled to more than 39K samples. Queries were over 24× faster in Mantis than in Bifrost (VariMerge does not immediately support general search queries we require). Dynamic Mantis indexes were about 2.5× smaller than Bifrost’s indexes and about half as big as VariMerge’s indexes.

    Availability and implementation

    Dynamic Mantis implementation is available at https://github.com/splatlab/mantis/tree/mergeMSTs.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Modern problems of concept annotation associate an object of interest (gene, individual, text document) with a set of interrelated textual descriptors (functions, diseases, topics), often organized in concept hierarchies or ontologies. Most ontology can be seen as directed acyclic graphs (DAGs), where nodes represent concepts and edges represent relational ties between these concepts. Given an ontology graph, each object can only be annotated by a consistent sub-graph; that is, a sub-graph such that if an object is annotated by a particular concept, it must also be annotated by all other concepts that generalize it. Ontologies therefore provide a compact representation of a large space of possible consistent sub-graphs; however, until now we have not been aware of a practical algorithm that can enumerate such annotation spaces for a given ontology.

    Results

    We propose an algorithm for enumerating consistent sub-graphs of DAGs. The algorithm recursively partitions the graph into strictly smaller graphs until the resulting graph becomes a rooted tree (forest), for which a linear-time solution is computed. It then combines the tallies from graphs created in the recursion to obtain the final count. We prove the correctness of this algorithm, propose several practical accelerations, evaluate it on random graphs and then apply it to characterize four major biomedical ontologies. We believe this work provides valuable insights into the complexity of concept annotation spaces and its potential influence on the predictability of ontological annotation.

    Availability and implementation

    https://github.com/shawn-peng/counting-consistent-sub-DAG

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract

    A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available athttp://github.com/medvedevgroup/ESSColor.

     
    more » « less