skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precursor-mediated in situ growth of hierarchical N-doped graphene nanofibers confining nickel single atoms for CO 2 electroreduction
Despite the various strategies for achieving metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO 2 RR), the synthesis–structure–performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N 3 , while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N 2 . Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp 2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N 3 sites exhibit a superior CO 2 RR performance compared to that with Ni-N 2 and Ni-N 4 ones.  more » « less
Award ID(s):
1949870 2016192
PAR ID:
10425539
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrochemical reduction reaction of CO2(CO2RR) is a promising technology for alleviating the global warming caused by the emission of CO2. This technology, however, is still in the stage of finding efficient catalysts. The catalysts must be able to convert CO2to other carbon‐based products with high activity and selectivity to valuable chemicals. In this review, previous development of heteroatom‐doped metal‐free carbon materials (H‐CMs) is briefly summarized. Recent progress of CO2RR promoted by metal single‐atom catalysts (M‐SACs) is then discussed with emphasis on the synthesis of M‐SACs, the catalytic performance, and reaction mechanisms. The high temperature pyrolysis method and electrodeposition are attracting attentions recently to prepare M‐SACs with high metal loading on N‐doped carbon materials, a very active M‐SACs system for the CO2RR. Theoretical calculations of free energy change on active sites, the Operando X‐ray absorption near edge structure (XANES), and Bader charge analysis reveal a significant role of metal oxidation state and charge transfer between metal atoms and absorbed CO. The challenges and perspectives for the extensive applications of M‐SACs in CO2RR are also discussed in this review. 
    more » « less
  2. Nickel and nitrogen co-doped carbon (Ni–N–C) has emerged as a promising catalyst for the CO 2 reduction reaction (CO 2 RR); however, the chemical nature of its active sites has remained elusive. Herein, we report the exploration of the reactivity and active sites of Ni–N–C for the CO 2 RR. Single atom Ni coordinated with N confined in a carbon matrix was prepared through thermal activation of chemically Ni-doped zeolitic imidazolate frameworks (ZIFs) and directly visualized by aberration-corrected scanning transmission electron microscopy. Electrochemical results show the enhanced intrinsic reactivity and selectivity of Ni–N sites for the reduction of CO 2 to CO, delivering a maximum CO faradaic efficiency of 96% at a low overpotential of 570 mV. Density functional theory (DFT) calculations predict that the edge-located Ni–N 2+2 sites with dangling bond-containing carbon atoms are the active sites facilitating the dissociation of the C–O bond of the *COOH intermediate, while bulk-hosted Ni–N 4 is kinetically inactive. Furthermore, the high capability of edge-located Ni–N 4 being able to thermodynamically suppress the competitive hydrogen evolution is also explained. The proposal of edge-hosed Ni–N 2+2 sites provides new insight into designing high-efficiency Ni–N–C for CO 2 reduction. 
    more » « less
  3. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO. 
    more » « less
  4. Abstract Understanding the thermal decomposition of metal salt precursors on carbon structures is essential for the controlled synthesis of metal‐decorated carbon nanomaterials. Here, the thermolysis of a Ni precursor salt, NiCl2·6H2O, on amorphous carbon (a‐C) and graphene oxide (GO) substrates is explored using in situ transmission electron microscopy. Thermal decomposition of NiCl2·6H2O on GO occurs at higher temperatures and slower kinetics than on a‐C substrate. This is correlated to a higher activation barrier for Cl2removal calculated by the density functional theory, strong Ni‐GO interaction, high‐density oxygen functional groups, defects, and weak van der Waals using GO substrate. The thermolysis of NiCl2·6H2O proceeds via multistep decomposition stages into the formation of Ni nanoparticles with significant differences in their size and distribution depending on the substrate. Using GO substrates leads to nanoparticles with 500% smaller average sizes and higher thermal stability than a‐C substrate. Ni nanoparticles showcase thefcccrystal structure, and no size effect on the stability of the crystal structure is observed. These findings demonstrate the significant role of carbon substrate on nanoparticle formation and growth during the thermolysis of carbon–metal heterostructures. This opens new venues to engineer stable, supported catalysts and new carbon‐based sensors and filtering devices. 
    more » « less
  5. Abstract The electrochemical reduction of nitrates (NO3) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3synthesis cost‐competitive with current technologies, high NH3partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3of 1.95 A cm−2at a Faradaic efficiency (FE) for NH3of 100% and an NH3yield rate over 9 mmol hr−1cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3(Fe3+) to highly active Fe0sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3particles and Fe–Nxsites at highly cathodic potentials, maintaining a current of −1.3 A cm−2over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity. 
    more » « less