skip to main content

Search for: All records

Award ID contains: 1949870

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fe–N–C single‐atom catalysts (SACs) exhibit excellent peroxidase (POD)‐like catalytic activity, owing to their well‐defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD‐like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD‐like activity of Fe–N–C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe–N4active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long‐range interaction. The experimental results show that the P‐doping process can boost the POD‐like activity more than the non‐P‐doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD‐like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine.

    more » « less
  2. Abstract

    The solid–solid electrode–electrolyte interface represents an important component in solid‐state batteries (SSBs), as ionic diffusion, reaction, transformation, and restructuring could all take place. As these processes strongly influence the battery performance, studying the evolution of the solid–solid interfaces, particularly in situ during battery operation, can provide insights to establish the structure–property relationship for SSBs. Synchrotron X‐ray techniques, owing to their unique penetration power and diverse approaches, are suitable to investigate the buried interfaces and examine structural, compositional, and morphological changes. In this review, we will discuss various surface‐sensitive synchrotron‐based scattering, spectroscopy, and imaging methods for the in situ characterization of solid–solid interfaces and how this information can be correlated to the electrochemical properties of SSBs. The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples, so that similar strategies can be applied by battery researchers and beyond to study similar solid‐solid interface systems.

    more » « less
  3. Abstract

    Metal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors. The Zn-Mn alloy anodes achieved stability over thousands of cycles even under harsh electrochemical conditions, including testing in seawater-based aqueous electrolytes and using a high current density of 80 mA cm−2. The proposed design strategy and the in-situ visualization protocol for the observation of dendrite growth set up a new milestone in developing durable electrodes for aqueous batteries and beyond.

    more » « less
  4. Free, publicly-accessible full text available October 1, 2024
  5. Aqueous sodium-ion batteries (ASIBs) represent a promising battery technology for stationary energy storage, due to their attractive merits of low cost, high abundance, and inherent safety. Recently, a variety of advanced cathode, anode, and electrolyte materials have been developed for ASIBs, which not only enhance our fundamental understanding of the Na insertion mechanism, but also facilitate the research and development of practical ASIB systems. Among these electrode materials, iron-based materials are of particular importance because of the high abundance, low price, and low toxicity of Fe elements. However, to our knowledge, there are no review papers that specifically discuss the properties of Fe-based materials for ASIBs yet. In this review, we present the recent research progress on Fe-based cathode/anode materials, which include polyanionic compounds, Prussian blue, oxides, carbides, and selenides. We also discuss the research efforts to build Fe-based ASIB full cells. Lastly, we share our perspectives on the key challenges that need to be addressed and suggest alternative directions for aqueous Na-ion batteries. We hope this review paper can promote more research efforts on the development of low-cost and low-toxicity materials for aqueous battery applications. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Despite the various strategies for achieving metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO 2 RR), the synthesis–structure–performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N 3 , while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N 2 . Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp 2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N 3 sites exhibit a superior CO 2 RR performance compared to that with Ni-N 2 and Ni-N 4 ones. 
    more » « less
  7. Abstract Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo 4 O 7 material. We reveal that the surface of YBaCo 4 O 7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo 4 O 7 composes of corner-sharing only CoO 4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER. 
    more » « less