skip to main content

Title: Assessing downstream aquatic habitat availability relative to headwater reservoir management in the Henrys Fork Snake River

Reservoirs are sometimes managed to meet agricultural and other water demands, while also maintaining streamflow for aquatic species and ecosystems. In the Henrys Fork Snake River, Idaho (USA), irrigation‐season management of a headwater reservoir is informed by a flow target in a management reach ~95 km downstream. The target is in place to meet irrigation demand and maintain aquatic habitat within the 11.4 km management reach and has undergone four flow target assignments from 1978 to 2021. Recent changes to irrigation‐season management to maximize reservoir carryover warranted investigation into the flow target assignment. Thus, we created a streamflow‐habitat model using hydraulic measurements, habitat unit mapping, and published habitat suitability criteria for Brown Trout (Salmo trutta), Rainbow Trout (Oncorhynchus mykiss), and Mountain Whitefish (Prosopium williamsoni). We used model output to compare habitat availability across two management regimes (1978–2017 and 2018–2021). We found that efforts to minimize reservoir releases in 2018–2021 did not reduce mean irrigation‐season fish habitat relative to natural flow, but did reduce overall fish habitat variability during the irrigation season compared to streamflow management in 1978–2017. Field observations for this research led to an adjusted flow target in 2020 that moved the target location downstream of intervening irrigation diversions. Using our model output, we demonstrated that moving the location of the target to account for local irrigation diversions will contribute to more consistently suitable fish habitat in the reach. Our study demonstrates the importance of site selection for establishing environmental flow targets.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Medium: X Size: p. 1749-1762
["p. 1749-1762"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Around the world, long‐term changes in the timing and magnitude of streamflow are testing the ability of large managed water resource systems constructed in the 20th century to continue to meet objectives in the 21st century. Streamflow records for unregulated rivers upstream of reservoirs can be combined with records downstream of reservoirs using a paired‐watershed framework and concepts of water resource system performance to assess how reservoir management has responded to long‐term change. Using publicly available data, this study quantified how the intra‐annual timing of inflows and outflows of 25 major reservoirs has shifted, how management has responded, and how this has influenced reliability and vulnerability of the water resource system in the 668,000 km2Columbia River basin from 1950 to 2012. Reservoir inflows increased slightly in early spring and declined in late spring to early fall, but reservoir outflows increased in late summer from 1950 to 2012. Average inflows to reservoirs in the low flow period exceeded outflows in the1950s, but inflows are now less than outflows. Reservoirs have increased hedging, that is, they have stored more water during the spring, in order to meet the widening gap between inflows and outflows during the summer low flow period. For a given level of reliability (the fraction of time flow targets were met), vulnerability (the maximum departure from the flow target) was greater during periods with lower than average inflows. Thus, the water management system in this large river basin has adjusted to multi‐decade trends of declining inflows, but vulnerability, that is, the potential for excess releases in spring and shortfalls in summer, has increased. This study demonstrates the value of combining publicly available historical data on streamflow with concepts from paired‐watershed analyses and metrics of water resource performance to detect, evaluate, and manage water resource systems in large river basins.

    more » « less
  2. Abstract

    Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses.

    more » « less
  3. The phenology of critical biological events in aquatic ecosystems are rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches, causing recruitment failures in commercially, culturally, and recreationally important fisheries. We tested for changes in spawning phenology of regionally important walleye (Sander vitreus) populations in 194 Midwest US lakes in Minnesota, Michigan, and Wisconsin spanning 1939-2019 to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice-off timing, lake physical characteristics, and population stocking history. Data from Wisconsin and Michigan lakes (185 and 5 out of 194 total lakes, respectively) were collected by the Wisconsin Department of Natural Resources (WDNR) and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) through standardized spring walleye mark-recapture surveys and spring tribal harvest season records. Standardized spring mark-recapture population estimates are performed shortly after ice-off, where following a marking event, a subsequent recapture sampling event is conducted using nighttime electrofishing (typically AC – WDNR, pulsed-DC – GLIFWC) of the entire shoreline including islands for small lakes and index stations for large lakes (Hansen et al. 2015) that is timed to coincide with peak walleye spawning activity (G. Hatzenbeler, WDNR, personal communication; M. Luehring, GLIFWC, personal communication; Beard et al. 1997). Data for four additional Minnesota lakes were collected by the Minnesota Department of Natural Resources (MNDNR) beginning in 1939 during annual collections of walleye eggs and broodstock (Schneider et al. 2010), where date of peak egg take was used to index peak spawning activity. For lakes where spawning location did not match the lake for which the ice-off data was collected, the spawning location either flowed into (Pike River) or was within 50 km of a lake where ice-off data were available (Pine River) and these ice-off data were used. Following the affirmation of off-reservation Ojibwe tribal fishing rights in the Ceded Territories of Wisconsin and the Upper Peninsula of Michigan in 1987, tribal spearfishers have targeted walleye during spring spawning (Mrnak et al. 2018). Nightly harvests are recorded as part of a compulsory creel survey (US Department of the Interior 1991). Using these records, we calculated the date of peak spawning activity in a given lake-year as the day of maximum tribal harvest. Although we were unable to account for varying effort in these data, a preliminary analysis comparing spawning dates estimated using tribal harvest to those determined from standardized agency surveys in the same lake and year showed that they were highly correlated (Pearson’s correlation: r = 0.91, P < 0.001). For lakes that had walleye spawning data from both agency surveys and tribal harvest, we used the data source with the greatest number of observation years. Ice-off phenology data was collected from two sources – either observed from the Global Lake and River Ice Phenology database (Benson et al. 2000)t, or modeled from a USGS region-wide machine-learning model which used North American Land Data Assimilation System (NLDAS) meteorological inputs combined with lake characteristics (lake position, clarity, size, depth, hypsography, etc.) to predict daily water column temperatures from 1979 - 2022, from which ice-off dates could be derived (; see Corson-Dosch et al. 2023 for details). Modeled data for our study lakes (see (Read et al. 2021) for modeling details), which performed well in reflecting ice phenology when compared to observed data (i.e., highly significant correlation between observed and modeled ice-off dates when both were available; r = 0.71, p < 0.001). Lake surface area (ha), latitude, and maximum depth (m) were acquired from agency databases and lake reports. Lake class was based on a WDNR lakes classification system (Rypel et al. 2019) that categorized lakes based on temperature, water clarity, depth, and fish community. Walleye stocking history was defined using the walleye stocking classification system developed by the Wisconsin Technical Working Group (see also Sass et al. 2021), which categorized lakes based on relative contributions of naturally-produced and stocked fish to adult recruitment by relying heavily on historic records of age-0 and age-1 catch rates and stocking histories. Wisconsin lakes were divided into three groups: natural recruitment (NR), a combination of stocking and natural recruitment (C-ST), and stocked only (ST). Walleye natural recruitment was indexed as age-0 walleye CPE (number of age-0 walleye captured per km of shoreline electrofished) from WDNR and GLIFWC fall electrofishing surveys (see Hansen et al. 2015 for details). We excluded lake-years where stocking of age-0 fish occurred before age-0 surveys to only include measurements of naturally-reproduced fish. 
    more » « less
  4. Abstract

    Climate change is expected to increase weather extremes and variability, including more frequent weather whiplashes or extreme swings between severe drought and extraordinarily wet years. Shifts in precipitation patterns will alter stream flow regimes, affecting critical life history stages of sensitive aquatic organisms. Understanding how threatened fish species, such as steelhead/rainbow trout (Oncorhynchus mykiss), are affected by stream flows in years with contrasting environmental conditions is important for their conservation. Here, we report how extreme wet and dry years, from 2015 to 2018, affected stream flow patterns in two tributaries to the South Fork Eel River, California,USA, and aspects ofO. mykissecology, including over‐summer fish growth and body condition as well as spring out‐migration timing. We found that stream flow patterns differed across years in the timing and magnitude of large winter–spring flow events and in summer low‐flow levels. We were surprised to find that differences in stream flows did not impact growth, body condition, or timing of out‐migration ofO. mykiss. Fish growth was limited in the late summer in these streams (average of 0.02 ± 0.05 mm/d), but was similar across dry and wet years, and so was end‐of‐summer body condition and pool‐specific biomass loss from the beginning to the end of the summer. Similarly,O. mykissmigrated out of tributaries during the last week of March/first week of April regardless of the timing of spring flow events. We suggest that the muted response to inter‐annual hydrologic variability is due to the high quality of habitat provided by these unimpaired, groundwater‐fed tributaries. Similar streams that are likely to maintain cool temperatures and sufficient base flows, even in the driest years, should be a high priority for conservation and restoration efforts.

    more » « less
  5. Abstract

    Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.

    more » « less