skip to main content


Title: The Isotopic Composition of Rainfall on a Subtropical Mountainous Island
Abstract Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ 2 H and δ 18 O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with a long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i. Significance Statement The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones.  more » « less
Award ID(s):
1945972
NSF-PAR ID:
10425769
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
24
Issue:
4
ISSN:
1525-755X
Page Range / eLocation ID:
761 to 781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures.

    Significance Statement

    The results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting.

     
    more » « less
  2. Abstract

    Pacific Islands present unique challenges for water resource management due to their environmental vulnerability, dynamic climates, and heavy reliance on groundwater. Quantifying connections between meteoric, ground, and surface waters is critical for effective water resource management. Analyses of the stable isotopes of oxygen and hydrogen in the hydrosphere can help illuminate such connections. This study investigates the stable isotope composition of rainfall on O‘ahu in the Hawaiian Islands, with a particular focus on how altitude impacts stable isotope composition. Rainfall was sampled at 20 locations from March 2018 to August 2021. The new precipitation stable isotope data were integrated with previously published data to create the most spatially and topographically diverse precipitation collector network on O‘ahu to date. Results show thatδ18O andδ2H values in precipitation displayed distinct isotopic signatures influenced by geographical location, season, and precipitation source. Altitude and isotopic compositions were strongly correlated along certain elevation transects, but these relationships could not be extrapolated to larger regions due to microclimate influences. Altitude and deuterium excess were strongly correlated across the study region, suggesting that deuterium excess may be a reliable proxy for precipitation elevation in local water tracer studies. Analysis of spring, rainfall, and fog stable isotope composition from Mount Ka‘ala suggests that fog may contribute up to 45% of total groundwater recharge at the summit. These findings highlight the strong influence of microclimates on the stable isotope composition of rainfall, underscore the need for further investigation into fog’s role in the water budget, and demonstrate the importance of stable isotope analysis for comprehending hydrologic dynamics in environmentally sensitive regions.

     
    more » « less
  3. Hydroclimate interpretations of stalagmite δ18O records from tropical regions requires an understanding of the temporal integration of rainfall amount and its isotopic composition by drip waters that form stalagmite deposits. This study presents oxygen (δ18O) and hydrogen (δD) isotopic results from over 1200 groundwater, rainfall and drip water samples, collected at ~weekly time intervals, over three hydrological years at Río Secreto Cave, in the Yucatán Peninsula, Mexico. Cave environmental conditions and the isotopic composition of drip water were monitored in three chambers with different degrees of air ventilation, along with temperature and relative humidity conditions at the surface. We examined 16 drips and observed that annual δD and δ18O variability reflects the isotopic variability of rainfall to varying degrees. The observed annual amplitude of drip water isotopic variability represents between 5% and 95% of that of rainfall, reflecting epikarst water reservoir size and the complexity of flow paths. Drips that closely reflect the isotopic variability of rainfall and best preserve the isotopic signal of individual rainfall events are observed, but they are uncommon. Only two drips out of 16 were found to have potential to record rainfall isotopic shifts associated with tropical cyclones if sampled at weekly resolution. The relationship between δD and δ18O in drip water suggests that recharge is biased toward the rainy season (June to November), which represents up to 80% of total annual precipitation. We find that over the course of a year most drips reflect the annual δ18O composition of rainfall, in support of quantitative precipitation estimates from stalagmite δ18O records. We find evidence that the effective recharge in this cave system is controlled by precipitation amount and that recharge is not limited to the months when precipitation exceeds evaporation. 
    more » « less
  4. Abstract

    Tropical cyclones produce rainfall with extremely negative isotope values (δ18O and δ2H), but the controls on isotopic fractionation during tropical cyclones are poorly understood. Here we studied the isotopic composition of rainfall at sites across central Texas during Hurricane Harvey (2017) to better understand these processes. Rainfall δ18O trend towards more negative values as a result of Rayleigh distillation of precipitation-generating airmasses as they travel towards the center of the storm. Superimposed on these gradual changes are abrupt isotopic shifts with exceptionally low deuterium excess values. These appear to be controlled by microphysical processes associated with the passage of spiral rainbands over the sampling locations. Isotope-enabled climate modeling suggests that it may be possible to identify the signature of tropical cyclones from annually resolved isotopic proxy records, but will depend on the size of the storm and the proximity of the site to the core of the storm system.

     
    more » « less
  5. Godfrey, Kris (Ed.)
    Abstract Islands are insular environments that are negatively impacted by invasive species. In Hawai‘i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genetic diversity, and natural history of the most recently established bee to Hawai‘i, Megachile policaris Say, 1831 (Hymenoptera: Megachilidae). Contemporary surveys identify that M. policaris is present on at least O‘ahu, Maui, and Hawai‘i Island, with the earliest detection of the species in 2017. Furthermore, repeated surveys and observations by community members support the hypothesis that M. policaris has been established on Hawai‘i Island from 2017 to 2020. DNA sequenced fragments of the cytochrome oxidase I locus identify two distinct haplotypes on Hawai‘i Island, suggesting that at least two founders have colonized the island. In their native range, M. policaris is documented to forage on at least 21 different plant families, which are represented in Hawai‘i. Finally, ensemble species distribution models (SDMs) constructed with four bioclimatic variables and occurrence data from the native range of M. policaris predicts high habitat suitability on the leeward side of islands throughout the archipelago and at high elevation habitats. While many of the observations presented in our study fall within the predicted habitat suitability on Hawai‘i, we also detected the M. policaris on the windward side of Hawai‘i Island suggesting that the SDMs we constructed likely do not capture the bioclimatic niche flexibility of the species. 
    more » « less