Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pacific Islands present unique challenges for water resource management due to their environmental vulnerability, dynamic climates, and heavy reliance on groundwater. Quantifying connections between meteoric, ground, and surface waters is critical for effective water resource management. Analyses of the stable isotopes of oxygen and hydrogen in the hydrosphere can help illuminate such connections. This study investigates the stable isotope composition of rainfall on O‘ahu in the Hawaiian Islands, with a particular focus on how altitude impacts stable isotope composition. Rainfall was sampled at 20 locations from March 2018 to August 2021. The new precipitation stable isotope data were integrated with previously published data to create the most spatially and topographically diverse precipitation collector network on O‘ahu to date. Results show thatδ18O andδ2H values in precipitation displayed distinct isotopic signatures influenced by geographical location, season, and precipitation source. Altitude and isotopic compositions were strongly correlated along certain elevation transects, but these relationships could not be extrapolated to larger regions due to microclimate influences. Altitude and deuterium excess were strongly correlated across the study region, suggesting that deuterium excess may be a reliable proxy for precipitation elevation in local water tracer studies. Analysis of spring, rainfall, and fog stable isotope composition from Mount Ka‘ala suggests that fog may contribute up to 45% of total groundwater recharge at the summit. These findings highlight the strong influence of microclimates on the stable isotope composition of rainfall, underscore the need for further investigation into fog’s role in the water budget, and demonstrate the importance of stable isotope analysis for comprehending hydrologic dynamics in environmentally sensitive regions.more » « less
-
Abstract While it is becoming increasingly clear that stable water isotopologues are important tools in the study of atmospheric convection, many questions remain on how different processes affect them. This work is focused on water vapor isotopes in precipitation‐driven downdrafts. Using idealized simulations, the contributions of rain evaporation and liquid‐vapor equilibration processes are analyzed. It is shown that rain evaporation tends to deplete water vapor isotopes throughout the downdraft's descent, whereas equilibration has a neutral or depleting effect in the first half of the downdraft's life cycle and an enriching one in the second half. The total contribution of the two processes is then discussed, and it is argued that equilibration has an overall small effect compared to rain evaporation. Finally, using two sensitivity experiments, it is shown that the role played by equilibration varies significantly in regimes with different concentrations of cloud condensation nuclei.more » « less
-
Abstract The project captured a subset of the hydrological cycle for the tropical island of O'ahu, linking precipitation to groundwater recharge and aquifer storage. We determined seasonal storm events contributed more to aquifer recharge than year‐round baseline orographic trade wind rainfall. Hydrogen and oxygen isotope values from an island‐wide rain collector network with 20 locations deployed for 16 months and sampled at 3‐month intervals were used to create the first local meteoric water line for O'ahu. Isotopic measurements were influenced by the amount effect, seasonality, storm type, and La Niña, though little elevation control was noted. Certain groundwater compositions from legacy data showed a strong similarity with collected precipitation from our stations. The majority of these significant relationships were between wet season precipitation and groundwater. A high number of moderate and heavy rainfall days during the dry season, large percentage of event‐based rainfall, and wind directions outside of the typical NE trade wind direction were characteristics of the 2017–2018 wet season. This indicates that the majority of wet season precipitation is from event‐based storms rather than typical trade wind weather. The deuterium‐excess values provided the strongest evidence of a relationship between groundwater and different precipitation sources, indicating that this may be a useful metric for determining the extent of recharge from different rain events and systems.more » « less
-
Abstract Tropical islands are simultaneously some of the most biodiverse and vulnerable places on Earth. Water resources help maintain the delicate balance on which the ecosystems and the population of tropical islands rely. Hydrogen and oxygen isotope analyses are a powerful tool in the study of the water cycle on tropical islands, although the scarcity of long-term and high-frequency data makes interpretation challenging. Here, a new dataset is presented based on weekly collection of rainfall H and O isotopic composition on the island of O‘ahu, Hawai‘i, beginning from July 2019 and still ongoing. The data show considerable differences in isotopic ratios produced by different weather systems, with Kona lows and upper-level lows having the lowest δ 2 H and δ 18 O values, and trade-wind showers the highest. The data also show significant spatial variability, with some sites being characterized by higher isotope ratios than others. The amount effect is not observed consistently at all sites. Deuterium excess shows a marked seasonal cycle, which is attributed to the different origin and history of the air masses that are responsible for rainfall in the winter and summer months. The local meteoric water line and a comparison of this dataset with a long-term historical record illustrate strong interannual variability and the need to establish a long-term precipitation isotope monitoring network for Hawai‘i. Significance Statement The isotopic composition of water is often used in the study of island water resources, but the scarcity of high-frequency datasets makes the interpretation of data difficult. The purpose of this study is to investigate the isotopic composition of rainfall on a mountainous island in the subtropics. Based on weekly data collection on O‘ahu, Hawai‘i, the results improve our understanding of the isotopic composition of rainfall due to different weather systems, like trade-wind showers or cold fronts, as well as its spatial and temporal variability. These results could inform the interpretation of data from other mountainous islands in similar climate zones.more » « less
An official website of the United States government
