skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cortical tracking of voice pitch in the presence of multiple speakers depends on selective attention
Voice pitch carries linguistic and non-linguistic information. Previous studies have described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, especially when competing streams have pitch differing in fundamental frequency, as is the case when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human magnetoencephalography (MEG) responses to continuous narrative speech, presented either as a single talker in a quiet background or as a two-talker mixture of a male and a female speaker. In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency of around 100 ms, consistent with previous electroencephalography and electrocorticography results. The response tracked both the presence of pitch and the relative value of the speaker’s fundamental frequency. In the two-talker mixture, the pitch of the attended speaker was tracked bilaterally, regardless of whether or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly tracked pitch of the unattended speaker, and only during intervals in which no pitch was present in the attended talker’s speech. Taken together, these results suggest that pitch-based segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not entirely automatic but strongly dependent on selective attention.  more » « less
Award ID(s):
1754284
PAR ID:
10425838
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Neuroscience
Volume:
16
ISSN:
1662-453X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Voice pitch carries linguistic as well as non-linguistic information. Previous studies have described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, especially when competing streams have pitch differing in fundamental frequency, as is the case when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human magnetoencephalography (MEG) responses to continuous narrative speech, presented either as a single talker in a quiet background, or as a two-talker mixture of a male and a female speaker. In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency of around 100 ms, consistent with previous EEG and ECoG results. The response tracked both the presence of pitch as well as the relative value of the speaker’s fundamental frequency. In the two-talker mixture, pitch of the attended speaker was tracked bilaterally, regardless of whether or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly tracked pitch of the unattended speaker, and only during intervals in which no pitch was present in the attended talker’s speech. Taken together, these results suggest that pitch-based segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not entirely automatic but strongly dependent on selective attention. 
    more » « less
  2. Auditory cortical responses to speech obtained by magnetoencephalography (MEG) show robust speech tracking to the speaker's fundamental frequency in the high-gamma band (70–200 Hz), but little is currently known about whether such responses depend on the focus of selective attention. In this study 22 human subjects listened to concurrent, fixed-rate, speech from male and female speakers, and were asked to selectively attend to one speaker at a time, while their neural responses were recorded with MEG. The male speaker's pitch range coincided with the lower range of the high-gamma band, whereas the female speaker's higher pitch range had much less overlap, and only at the upper end of the high-gamma band. Neural responses were analyzed using the temporal response function (TRF) framework. As expected, the responses demonstrate robust speech tracking of the fundamental frequency in the high-gamma band, but only to the male's speech, with a peak latency of ~40 ms. Critically, the response magnitude depends on selective attention: the response to the male speech is significantly greater when male speech is attended than when it is not attended, under acoustically identical conditions. This is a clear demonstration that even very early cortical auditory responses are influenced by top-down, cognitive, neural processing mechanisms. 
    more » « less
  3. When listening to speech, our brain responses time lock to acoustic events in the stimulus. Recent studies have also reported that cortical responses track linguistic representations of speech. However, tracking of these representations is often described without controlling for acoustic properties. Therefore, the response to these linguistic representations might reflect unaccounted acoustic processing rather than language processing. Here, we evaluated the potential of several recently proposed linguistic representations as neural markers of speech comprehension. To do so, we investigated EEG responses to audiobook speech of 29 participants (22 females). We examined whether these representations contribute unique information over and beyond acoustic neural tracking and each other. Indeed, not all of these linguistic representations were significantly tracked after controlling for acoustic properties. However, phoneme surprisal, cohort entropy, word surprisal, and word frequency were all significantly tracked over and beyond acoustic properties. We also tested the generality of the associated responses by training on one story and testing on another. In general, the linguistic representations are tracked similarly across different stories spoken by different readers. These results suggests that these representations characterize the processing of the linguistic content of speech. SIGNIFICANCE STATEMENT For clinical applications, it would be desirable to develop a neural marker of speech comprehension derived from neural responses to continuous speech. Such a measure would allow for behavior-free evaluation of speech understanding; this would open doors toward better quantification of speech understanding in populations from whom obtaining behavioral measures may be difficult, such as young children or people with cognitive impairments, to allow better targeted interventions and better fitting of hearing devices. 
    more » « less
  4. When dealing with overlapped speech, the performance of automatic speech recognition (ASR) systems substantially degrades as they are designed for single-talker speech. To enhance ASR performance in conversational or meeting environments, continuous speaker separation (CSS) is commonly employed. However, CSS requires a short separation window to avoid many speakers inside the window and sequential grouping of discontinuous speech segments. To address these limitations, we introduce a new multi-channel framework called “speaker separation via neural diarization” (SSND) for meeting environments. Our approach utilizes an end-to-end diarization system to identify the speech activity of each individual speaker. By leveraging estimated speaker boundaries, we generate a sequence of embeddings, which in turn facilitate the assignment of speakers to the outputs of a multi-talker separation model. SSND addresses the permutation ambiguity issue of talker-independent speaker separation during the diarization phase through location-based training, rather than during the separation process. This unique approach allows multiple non-overlapped speakers to be assigned to the same output stream, making it possible to efficiently process long segments—a task impossible with CSS. Additionally, SSND is naturally suitable for speaker-attributed ASR. We evaluate our proposed diarization and separation methods on the open LibriCSS dataset, advancing state-of-the-art diarization and ASR results by a large margin. 
    more » « less
  5. Abstract Modern automatic speech recognition (ASR) systems are capable of impressive performance recognizing clean speech but struggle in noisy, multi-talker environments, commonly referred to as the “cocktail party problem.” In contrast, many human listeners can solve this problem, suggesting the existence of a solution in the brain. Here we present a novel approach that uses a brain inspired sound segregation algorithm (BOSSA) as a preprocessing step for a state-of-the-art ASR system (Whisper). We evaluated BOSSA’s impact on ASR accuracy in a spatialized multi-talker scene with one target speaker and two competing maskers, varying the difficulty of the task by changing the target-to-masker ratio. We found that median word error rate improved by up to 54% when the target-to-masker ratio was low. Our results indicate that brain-inspired algorithms have the potential to considerably enhance ASR accuracy in challenging multi-talker scenarios without the need for retraining or fine-tuning existing state-of-the-art ASR systems. 
    more » « less