skip to main content

This content will become publicly available on July 8, 2023

Title: Cortical tracking of voice pitch in the presence of multiple speakers depends on selective attention
Voice pitch carries linguistic as well as non-linguistic information. Previous studies have described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, especially when competing streams have pitch differing in fundamental frequency, as is the case when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human magnetoencephalography (MEG) responses to continuous narrative speech, presented either as a single talker in a quiet background, or as a two-talker mixture of a male and a female speaker. In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency of around 100 ms, consistent with previous EEG and ECoG results. The response tracked both the presence of pitch as well as the relative value of the speaker’s fundamental frequency. In the two-talker mixture, pitch of the attended speaker was tracked bilaterally, regardless of whether or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly tracked pitch more » of the unattended speaker, and only during intervals in which no pitch was present in the attended talker’s speech. Taken together, these results suggest that pitch-based segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not entirely automatic but strongly dependent on selective attention. « less
Authors:
;
Award ID(s):
1734892
Publication Date:
NSF-PAR ID:
10340196
Journal Name:
Frontiers in neuroscience
Volume:
08 Jul 2022
ISSN:
1662-4548
Sponsoring Org:
National Science Foundation
More Like this
  1. Aging is associated with an exaggerated representation of the speech envelope in auditory cortex. The relationship between this age-related exaggerated response and a listener’s ability to understand speech in noise remains an open question. Here, information-theory-based analysis methods are applied to magnetoencephalography recordings of human listeners, investigating their cortical responses to continuous speech, using the novel nonlinear measure of phase-locked mutual information between the speech stimuli and cortical responses. The cortex of older listeners shows an exaggerated level of mutual information, compared with younger listeners, for both attended and unattended speakers. The mutual information peaks for several distinct latencies: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). For the late component, the neural enhancement of attended over unattended speech is affected by stimulus signal-to-noise ratio, but the direction of this dependency is reversed by aging. Critically, in older listeners and for the same late component, greater cortical exaggeration is correlated with decreased behavioral inhibitory control. This negative correlation also carries over to speech intelligibility in noise, where greater cortical exaggeration in older listeners is correlated with worse speech intelligibility scores. Finally, an age-related lateralization difference is also seen for the ∼100 ms latency peaks, where older listeners showmore »a bilateral response compared with younger listeners’ right lateralization. Thus, this information-theory-based analysis provides new, and less coarse-grained, results regarding age-related change in auditory cortical speech processing, and its correlation with cognitive measures, compared with related linear measures. NEW & NOTEWORTHY Cortical representations of natural speech are investigated using a novel nonlinear approach based on mutual information. Cortical responses, phase-locked to the speech envelope, show an exaggerated level of mutual information associated with aging, appearing at several distinct latencies (∼50, ∼100, and ∼200 ms). Critically, for older listeners only, the ∼200 ms latency response components are correlated with specific behavioral measures, including behavioral inhibition and speech comprehension.« less
  2. Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peakmore »correlations were extracted for each frequency for each electrode, participant, and video. A set of standard ML algorithms were applied to the entire dataset (26 channels, frequencies from .2 Hz to 12.4 Hz, binned in 1 Hz increments), with consistent out-of-sample 100% accuracy for frequencies in .2-1 Hz range for all regions, and above 80% accuracy for frequencies < 4 Hz. Sparse Optimal Scoring (SOS) was then applied to the EEG data to reduce the dimensionality of the features and improve model interpretability. SOS with elastic-net penalty resulted in out-of-sample classification accuracy of 98.89%. The sparsity pattern in the model indicated that frequencies between 0.2–4 Hz were primarily used in the classification, suggesting that underlying data may be group sparse. Further, SOS with group lasso penalty was applied to regional subsets of electrodes (anterior, posterior, left, right). All trials achieved greater than 97% out-of-sample classification accuracy. The sparsity patterns from the trials using 1 Hz bins over individual regions consistently indicated frequencies between 0.2–1 Hz were primarily used in the classification, with anterior and left regions performing the best with 98.89% and 99.17% classification accuracy, respectively. While the sparsity pattern may not be the unique optimal model for a given trial, the high classification accuracy indicates that these models have accurately identified common neural responses to visual linguistic stimuli. Cortical tracking of spectro-temporal change in the visual signal of sign language appears to rely on lower frequencies proportional to the N400/P600 time-domain evoked response potentials, indicating that visual language comprehension is grounded in predictive processing mechanisms.« less
  3. Abstract Numerous studies have suggested that the perception of a target sound stream (or source) can only be segregated from a complex acoustic background mixture if the acoustic features underlying its perceptual attributes (e.g., pitch, location, and timbre) induce temporally modulated responses that are mutually correlated (or coherent), and that are uncorrelated (incoherent) from those of other sources in the mixture. This “temporal coherence” hypothesis asserts that attentive listening to one acoustic feature of a target enhances brain responses to that feature but would also concomitantly (1) induce mutually excitatory influences with other coherently responding neurons, thus enhancing (or binding) them all as they respond to the attended source; by contrast, (2) suppressive interactions are hypothesized to build up among neurons driven by temporally incoherent sound features, thus relatively reducing their activity. In this study, we report on EEG measurements in human subjects engaged in various sound segregation tasks that demonstrate rapid binding among the temporally coherent features of the attended source regardless of their identity (pure tone components, tone complexes, or noise), harmonic relationship, or frequency separation, thus confirming the key role temporal coherence plays in the analysis and organization of auditory scenes.
  4. In realistic speech enhancement settings for end-user devices, we often encounter only a few speakers and noise types that tend to reoccur in the specific acoustic environment. We propose a novel personalized speech enhancement method to adapt a compact denoising model to the test-time specificity. Our goal in this test-time adaptation is to utilize no clean speech target of the test speaker, thus fulfilling the requirement for zero-shot learning. To complement the lack of clean speech, we employ the knowledge distillation framework: we distill the more advanced denoising results from an overly large teacher model, and use them as the pseudo target to train the small student model. This zero-shot learning procedure circumvents the process of collecting users' clean speech, a process that users are reluctant to comply due to privacy concerns and technical difficulty of recording clean voice. Experiments on various test-time conditions show that the proposed personalization method can significantly improve the compact models' performance during the test time. Furthermore, since the personalized models outperform larger non-personalized baseline models, we claim that personalization achieves model compression with no loss of denoising performance. As expected, the student models underperform the state-of-the-art teacher models.
  5. In the last few years, a large number of experiments have been focused on exploring the possibility of using non-invasive techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), to identify auditory-related neuromarkers which are modulated by attention. Results from several studies where participants listen to a story narrated by one speaker, while trying to ignore a different story narrated by a competing speaker, suggest the feasibility of extracting neuromarkers that demonstrate enhanced phase locking to the attended speech stream. These promising findings have the potential to be used in clinical applications, such as EEG-driven hearing aids. One major challenge in achieving this goal is the need to devise an algorithm capable of tracking these neuromarkers in real-time when individuals are given the freedom to repeatedly switch attention among speakers at will. Here we present an algorithm pipeline that is designed to efficiently recognize changes of neural speech tracking during a dynamic-attention switching task and to use them as an input for a near real-time state-space model that translates these neuromarkers into attentional state estimates with a minimal delay. This algorithm pipeline was tested with MEG data collected from participants who had the freedom to change the focus of their attentionmore »between two speakers at will. Results suggest the feasibility of using our algorithm pipeline to track changes of attention in near-real time in a dynamic auditory scene.« less