Abstract Observations of backscatter from field‐aligned plasma density irregularities in sporadicE(Es) layers made with a 30‐MHz coherent scatter radar imager in Ithaca, New York are presented and analyzed. The volume probed by the radar lies at approximately 54° geomagnetic latitude, under the midlatitude trough and at the extreme northern edge of the zone whereEslayers are prevalent. Nonetheless, the irregularities exhibit many of the characteristics of quasiperiodic echoes observed commonly at lower middle latitudes. These include a tendency to occur in elongated bands stretching from the northwest to southeast in the Northern hemisphere separated by tens of kilometers and propagating to the southwest. In addition, the irregularities were found to exhibit finer‐scale structures with secondary bands oriented nearly normally to the primary bands. We investigate the proposition that the primary bands are telltale ofEs‐layer structuring caused by neutral Kelvin Helmholtz (KH) instability in the lower thermosphere and that the secondary bands signify secondary KH instability. Results from a 3D numerical simulation of KH support this proposition. 
                        more » 
                        « less   
                    
                            
                            Modeling E ‐Region Artificial Periodic Inhomogeneity
                        
                    
    
            Abstract Artificial periodic inhomogeneity or API experiments were conducted at the HAARP facility in Gakona, Alaska, in October 2022. The experiments concentrated on measuring ionospheric irregularities induced in theE‐region. The irregularities exhibited characteristics regarding their occurrence altitudes, rise and fall times, and Doppler shifts comparable to results from experiments conducted previously at HAARP and elsewhere. The irregularities also occurred in discrete altitude bands. Seeking to quantify these results, we constructed a simple, one‐dimensional fluid model which includes the effects of HF wave heating (direct and indirect) together with electron and ion cooling and thermal conduction, ion production, loss, and diffusion. Critically, the model includes a potential solver and can represent the ambipolar electric field. The model produced API irregularities in three distinct altitude bands which decayed according to the ambipolar diffusion rate. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10425848
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Radio Science
- Volume:
- 58
- Issue:
- 6
- ISSN:
- 0048-6604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Electron density irregularities on the dayside in the low‐latitudeFregion are understood as remnants (or fossils) of nighttime plasma bubbles. We provide observational evidence of the connection of daytime irregularities to nighttime bubbles and the transport of the daytime irregularities by the vertical motion of the background ionosphere. The distributions of irregularities are derived using the measurements of the ion density by the first Republic of China satellite from March 1999 to June 2004. The seasonal and longitudinal distributions of daytime and nighttime irregularities in low latitudes show a close similarity. The high occurrence rate of daytime irregularities at the longitudes where strong irregularities occur frequently at night provides strong evidence of the association of daytime irregularities with nighttime bubbles. Nighttime irregularities are concentrated in the equatorial region, whereas daytime irregularities spread over broader latitudes. The seasonal and longitudinal variation of the latitudinal spread of daytime irregularities is consistent with the morphologies of plasma density and vertical plasma velocity. The zonal wave number 4 pattern, which corresponds to that in plasma density, is identified in the distribution of daytime irregularities. These observations lead to the conclusion that the morphology of daytime irregularities in the low‐latitudeFregion is dominated by the morphology of bubbles at night and the ionospheric fountain process on the dayside.more » « less
- 
            Abstract A drift‐diffusion model is used to simulate the low‐altitude electron distribution, accounting for azimuthal drift, pitch angle diffusion, and atmospheric backscattering effects during a rapid electron dropout event on 21st August 2013, atL = 4.5. Additional external loss effects are introduced during times when the low‐altitude electron distribution cannot be reproduced by diffusion alone. The model utilizes low‐altitude electron count rate data from five POES/MetOp satellites to quantify pitch angle diffusion rates. Low‐altitude data provides critical constraint on the model because it includes the drift loss cone region where the electron distribution in longitude is highly dependent on the balance between azimuthal drift and pitch angle diffusion. Furthermore, a newly derived angular response function for the detectors onboard POES/MetOp is employed to accurately incorporate the bounce loss cone measurements, which have been previously contaminated by electrons from outside the nominal field‐of‐view. While constrained by low‐altitude data, the model also shows reasonable agreement with high‐altitude data. Pitch angle diffusion rates during the event are quantified and are faster at lower energies. Precipitation is determined to account for all of the total loss observed for 450 keV electrons, 88% for 600 keV and 38% for 900 keV. Predictions made in the MeV range are deemed unreliable as the integral energy channels E3 and P6 fail to provide the necessary constraint at relativistic energies.more » « less
- 
            Abstract A linear theory of the generalized Rayleigh‐Taylor instability (GRTI) is derived which includes ion inertia and acceleration forces, as well asEregion drivers: the zonal neutral wind and plasma drift. This is in contrast to theFregion drivers (aside from gravity): the meridional neutral wind and the meridional/vertical plasma drifts. Both a local theory and a flux‐tube integrated theory are presented with application to the onset of ionosphere irregularities associated with equatorial spreadF. Inertia and acceleration forces do not affect the growth rate of the GRTI for nominal ionospheric conditions, but theEregion zonal drifts can significantly increase or decrease the growth rate of the GRTI in the equatorial and mid‐latitude ionosphere depending on their direction.more » « less
- 
            Abstract Observations of coherent scatter from patchy sporadicElayers in the subauroral zone made with a 30‐MHz coherent scatter radar imager are presented. The quasiperiodic (QP) echoes are similar to what has been observed at middle latitudes but with some differences. The echoes arise from bands of scatterers aligned mainly northwest to southeast and propagating to the southwest. A notable difference from observations at middle latitudes is the appearance of secondary irregularities or braids oriented obliquely to the primary bands and propagating mainly northward along them. We present a spectral simulation of the patchy layers that describes neutral atmospheric dynamics with the incompressible Navier Stokes equations and plasma dynamics with an extended MHD model. The simulation is initialized with turning shears in the form of an Ekman spiral. Ekman‐type instability deforms the sporadicElayer through compressible and incompressible motion. The layer ultimately exhibits both the QP bands and the braids, consequences mainly of primary and secondary neutral dynamic instability. Vorticity due to dynamic instability is an important source of structuring in the sporadicElayer.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
