Abstract Angular response functions are derived for four electron channels and six proton channels of the SEM‐2 MEPED particle telescopes on the POES and MetOp satellites from Geant4 simulations previously used to derive the energy response. They are combined with model electron distributions in energy and pitch angle to show that the vertical 0° telescope, intended to measure precipitating electrons, instead usually measures trapped or quasi‐trapped electrons, except during times of enhanced pitch angle diffusion. A simplified dynamical model of the radiation belt electron distribution near the loss cone, as a function of longitude, energy, and pitch angle, that accounts for pitch angle diffusion, azimuthal drift, and atmospheric backscatter is fit to sample MEPED electron data atL = 4during times of differing diffusion rates. It is then used to compute precipitating electron flux, as function of energy and longitude, that is lower than would be estimated by assuming that the 0° telescope always measures precipitating electrons.
more »
« less
Modeling the Contribution of Precipitation Loss to a Radiation Belt Electron Dropout Observed by Van Allen Probes
Abstract A drift‐diffusion model is used to simulate the low‐altitude electron distribution, accounting for azimuthal drift, pitch angle diffusion, and atmospheric backscattering effects during a rapid electron dropout event on 21st August 2013, atL = 4.5. Additional external loss effects are introduced during times when the low‐altitude electron distribution cannot be reproduced by diffusion alone. The model utilizes low‐altitude electron count rate data from five POES/MetOp satellites to quantify pitch angle diffusion rates. Low‐altitude data provides critical constraint on the model because it includes the drift loss cone region where the electron distribution in longitude is highly dependent on the balance between azimuthal drift and pitch angle diffusion. Furthermore, a newly derived angular response function for the detectors onboard POES/MetOp is employed to accurately incorporate the bounce loss cone measurements, which have been previously contaminated by electrons from outside the nominal field‐of‐view. While constrained by low‐altitude data, the model also shows reasonable agreement with high‐altitude data. Pitch angle diffusion rates during the event are quantified and are faster at lower energies. Precipitation is determined to account for all of the total loss observed for 450 keV electrons, 88% for 600 keV and 38% for 900 keV. Predictions made in the MeV range are deemed unreliable as the integral energy channels E3 and P6 fail to provide the necessary constraint at relativistic energies.
more »
« less
- Award ID(s):
- 1752736
- PAR ID:
- 10578577
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 3
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves can drive radiation belt depletion and Low‐Earth Orbit satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC‐driven electron precipitation with much higher energy and pitch‐angle resolution than previously allowed. We collect EMIC‐driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s–100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (∼0.3 L), over 15–24 MLT and 5–8 L shells, stronger at ∼MeV energies and weaker down to ∼100–200 keV. Additionally, the observed loss cone pitch‐angle distribution agrees with quasilinear predictions at ≳250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low‐energy precipitation.more » « less
-
Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.more » « less
-
Abstract Electron cyclotron harmonic waves (ECH) play a key role in scattering and precipitation of plasma sheet electrons. Previous analysis on the resonant interaction between ECH waves and electrons assumed that these waves are generated by a loss cone distribution and propagate nearly perpendicular to the background magnetic field. Recent spacecraft observations, however, have demonstrated that such waves can also be generated by low energy electron beams and propagate at moderately oblique angles . To quantify the effects of this newly observed ECH wave mode on electron dynamics in Earth's magnetosphere, we use quasi‐linear theory to calculate the associated electron pitch angle diffusion coefficient. Utilizing THEMIS spacecraft measurements, we analyze in detail a few representative events of beam‐driven ECH waves in the plasma sheet and the outer radiation belt. Based on the observed wave properties and the hot plasma dispersion relation of these waves, we calculate their bounce‐averaged pitch angle, momentum and mixed diffusion coefficients. We find that these waves most efficiently scatter low‐energy electrons (10–500 eV) toward larger pitch angles, on time scales of to seconds. In contrast, loss‐cone‐driven ECH waves most efficiently scatter higher‐energy electrons (500 eV–5 keV) toward lower pitch‐angles. Importantly, beam‐driven ECH waves can effectively scatter ionospheric electron outflows out of the loss cone near the magnetic equator. As a result, these outflows become trapped in the magnetosphere, forming a near‐field‐aligned anisotropic electron population. Our work highlights the importance of ECH waves, particularly beam‐driven modes, in regulating magnetosphere‐ionosphere particle and energy coupling.more » « less
An official website of the United States government

